
Contract Signing Using PGP

Ole Kasper Olsen mail@olekasper.no

Ole Martin Dahl mail@olemartin.com
Torkjel Søndrol mail@torkjel.com

Fredrik Skarderud fredrik@skarderud.net

Gjøvik University College, NISlab

December 7, 2004

Abstract

Is it possible to achieve non-repudiation during electronic contract-
signing? How can this be achieved in an e-mail based environment? These
are the questions we will try to answer.

The process of getting these answers will involve a short introduction
to some of the available contract-signing standards and an analysis of how
well the given standard would work in a e-mail environment.

Additionaly, we will present a prototype we have implemented that
provides secure contract signing using mail and PGP1.

1 Introduction

— Contract2

1. An agreement between two or more parties, especially one that is
written and enforceable by law.

2. The writing or document containing such an agreement.

3. The branch of law dealing with formal agreements between parties.

Contracts are vital for all kind of businesses, including electronic commerce.
Every agreement between two or more parties involves a contract of some kind.
E.g. on-line purchases imply a contract that promise to exchange money for
some good or service. Electronic contracts make electronic commerce possible.

1.1 Contract Properties

Contract signing has some properties that are important to cover. Firstly the
contract signing must be atomic. That is the contract must either be mutually
agreed to or not agreed to at all, no intermediate state exist. A more detailed
explanation of the importance of atomicity for e-commerce is given by Tygar in
[1]. Ensuring full atomicity in unreliable network conditions is difficult.

1Pretty Good Privacy http://www.philzimmermann.com
2Source: http://www.dictionary.com

1



The contract signing must also be durable, meaning that when the contract
is signed by both parties, there is no way to undo it. The only way to undo
a signed contract, is to sign a new contract that specifically invalidates the
previous contract, or an expiry date is reached.

The point of time when the agreement is formed is also an important prop-
erty, called agreement formation time.

1.2 Contract Protocol Properties

To ensure support for the contract properties in a contract signing protocol,
certain protocol properties are required.

One necessary property is fair contract signing [2, 3, 4]. A protocol is said to
be fair if neither party could gain any advantage by terminating the protocol in
the middle. The common solution for fair exchange is to use a TTP. The TTP
approve the contract only after all signing is done. Traditionally this solution
require that all the communication go through the TTP, i.e. an in-line TTP.
Making the communication less dependent on processing from a TTP is often
a goal.

Another important property in a contract scheme is accountability. Account-
ability means that if the TTP misbehaves in any way, then this can be proven.
E.g. after the protocol execution with the parties Alice, Bob and the TTP, Alice
does not obtain a valid contract. If the TTP does not misbehave, then Bob will
not have a valid contract either, but if Bob does have a valid contract, and tries
to enforce it in court, then the contract that Bob presents in court, together
with information obtained by Alice during the execution of the protocol, can
be used to prove that the TTP misbehaved. The contract is then ruled invalid.
At the same time it must be infeasible for Alice and Bob to frame the TTP if
it does not misbehave.

Non-repudiation is an important security service that give more trust to
e-commerce.

Non-repudiation is a security service that creates, collects, vali-
dates, and maintains cryptographic evidence, such as digital signa-
tures, in electronic transactions to support the settlement of possible
disputes. [5]

The research on non-repudiation is fairly new and the literature on the subject
is much more scarce than in other information security areas like confidentiality,
integrity and availability. This in spite of non-repudiation being one of the main
areas in information security. The need for non-repudiation occur in many situa-
tions [5, 6, 4, 7], e.g. in electronic payment system, dispute resolution, protocols
for network security, message-handling systems and is an absolute requirement
in a contract signing protocol. If the Internet had more non-repudiation services,
it would be more difficult to commit fraud and other malicious activities.

Completeness is also a desired property in contract signing protocols. A pro-
tocol should be robust against adversaries attempting to cause to abort without
the consent of either party.

2



1.3 Trusted Third-Party Roles

TTP works as a third participant in scenarios where two parties need additional
trust between them, for instance when it comes to contract signing. This trusted
third party can in real life be compared to the post office receiving registered
mail, and getting a receipt from the receiver before delivering the registered
mail. In this case both parties trust the post office.

[5] defines three different kinds of TTPs:

• In-line TTP where the TTP acts as an intermediary between the two
participants.

• On-line TTP where the TTP is actively involved in every instance of the
non-repudiation service.

• Off-line TTP where the TTP provides non-repudiation without being in-
volved in each instance of the service. It is only involved when needed.

The standardisation of the use of TTPs are further described in ISO 14516
[8].

2 Protocols

There are two main categories of contract signing protocols. Two-party protocols
and third-party protocols. The literature often divide third-party protocols into
fully trusted third-party protocols and not so trusted third-party protocols.

2.1 Two-Party Protocols

It is claimed that it is impossible to make a fully fair two party protocol. At some
point during the contract signing protocol one of the participating parties always
has an advantage or more information about the contract to be signed than the
other party. Whichever party holding this advantage can at any point simply
decide to stop participating in the protocol. Imagine for example that a user
receive a signed contract from the other party, and never returns his signature
to the other party. He now sits on a valid contract, and when the other party
starts asking about his contribution to the signing scenario he simply says that
he has sent it, it is probably lost in transit. Another scenario could be that a
participant receive the contract and not approve of it, he simply can claim that
he has never received the contract at all.

Several solutions and protocols are proposed to overcome this problem. One
approach is using the gradual exchange protocols. Ralph Merkle’s Puzzle Pro-
tocol [9] is an example of such an protocol. The basic idea in this kind of
protocols is to give the receiving part of the contract signing a puzzle of the
complete contract, in such a way that it will not make any sense before the
entire protocol is completed. The receiver needs a complete list of hints to solve
the puzzle, and to receive the hints, the receiver must request them. The puzzle
can for instance be a cryptographic solution, where the hints are small pieces of
the complete encryption key. The obvious problem of such a protocol is com-
putational power. Holding the partial key, if one party has significantly more
computational power than the other party, he could compute and decrypt the

3



contract before the complete key is revealed. Another major drawback lies in
the fact that these protocols are gradual. Thus a large number of messages are
needed to complete the protocol, and a large overhead is created.

A lot of work have been done to solve the computational power problem.
The protocols in [10] and [2] propose ways to encounter this problem, however
these protocols do not seem to solve the problem of one party stopping the
exchange midway through, possibly holding an unfair advantage over the other
party. In other words fairness is not achieved.

2.2 Third-Party Protocols

2.2.1 Fully Trusted Third-Party Protocols

TTP protocols (see section 1.3) are based on the idea that a third party who
both participants trust are involved in some way during the contract signing
protocol. The two main problems with this approach are that the TTP needs
to be involved in every transaction, and if the TTP is evil, can it make false
contracts and misuse its trust?

The first problem is solved in optimistic protocols. The idea behind opti-
mistic protocols is that the TTP is not contacted unless something goes wrong
or a conflict occurred during the protocol execution. Section 2.3 describes one
of the optimistic protocols in more detail.

The problem of an evil TTP can be solved if the third party does not have
the power to create contracts, or if the third party is not able to read or misuse
the contracts or information which is to be signed by the two parties. This
attribute is often referred to as abuse-freeness or resistant towards release of
message content attacks[11]. If the contract signing protocol is designed in such
a way that neither the third party nor the participants can show the contract
to others, it is said that the protocol has total abuse-freeness. This concept was
first introduced in 1999 [12]. The first version of the protocol however proved
not to be abuse-free [13]. Following this analysis a new version of the protocol
was developed. This version is not yet proven to lack abuse-freeness.

2.2.2 Not So Trusted Third-Party Protocols

Protocols which require a third-party, but does not have to trust the third
party very much, are often referred to as not so trusted third-party protocols. In
practise this means that the third party are unlikely or unable to forge contracts,
because of the third party’s nature.

Riordan and Schneier have proposed a protocol that makes use of such a
third party [14]. This protocol makes use of a public bulletin board as a third
party. The general idea is as follows: A user A sends a signed e-mail encrypted
with a random key using some kind of symmetric cryptographic algorithm to a
user B. B then returns a signed e-mail, working as a receipt, back to A, saying
that B would like A to publish the key for the encrypted message on the bulletin
board by a time T. A then publishes the key before time T, and B can now
download and decrypt the message.

Another interesting protocol in this category is [15]. In short this protocol
makes use of a third-party whose only task is to generate random numbers, and
tie these numbers to timestamps which increase by a given interval.

4



2.3 Optimistic Fair Exchange Protocol

Optimistic fair exchange [16] eliminates processing on the TTP in normal sit-
uations. The TTP is only needed when a party is unfaithful or when messages
are lost.

The optimistic fair exchange protocol (OFEP) proposed in [16] is easily
adapted for use in an Internet based contract signing environment [17].

The basics of OFEP [16] is as follows. Alice and Bob are exchanging a
contract. m is the contract body. All parties are mutually authenticated, e.g.
through the use of PKI3. First, Bob and Alice exchange precontracts.

• Alice′s precontract = SigAlice(m,Alice,Bob, TTP )

• Bob′s precontract = SigBob(m,Alice, Bob, TTP )

Note that the precontracts themselves are not valid contracts. To prevent a
dishonest player to use the same message several times, a nonce4 must be in-
serted into the message. When Alice receive Bob’s precontract in return for her
own, she knows that Bob has committed to sign the contract so she can sign the
contract without risk. If Bob refuses to sign the contract, Alice can go to the
TTP with the two precontracts and have the TTP certify the contract. This
implies two types of contracts; a standard and a notarised contract. If both
parties behave as expected and no messages is lost during the protocol the con-
tract is at the form: contract = SigAlice(m, Alice, Bob), SigBob(m,Alice, Bob).
If something goes wrong during the exchange, the TTP can issue an alternative
form of a contract by signing the two precontracts:
contract = SigTTP (SigAlice(m,Alice, Bob, TTP ), SigBob(m,Alice, Bob, TTP ).
This is a notarised contract. These two types of contracts are equally valid.

3 Applied Theory

We aim to implement a prototype of a on-line service for signing arbitrary
contracts between two parties. The goal of the implementation is fair exchange
of non-refutable signatures of a contract, using no special technologies other
than what is supported by current e-mail clients.

We have made two protocol drafts to solve this. The first draft is relying
on a fully trusted on-line third-party where fairness is the main goal to achieve.
We then improve the protocol with an aim to provide abuse-freeness.

3.1 Scenario

Our scenario is an e-mail environment, where the two parties register their
public PGP keys on a contract-signing server in advance of a contract-signing
process. The two contract-signing parties might then use their PGP key pairs
when signing the contract they will negotiate.

3Public Key Infrastructure
4A number used once

5



3.1.1 Pretty Good Privacy

We base our protocol on currently available technology. PGP [18], created in
1991 by Philip Zimmermann, is a universally used method for secure commu-
nication via e-mail. PGP brings together many of the most used asymmetric
and symmetric crypto algorithms and hash algorithms in such a way that the
confidentiality and integrity of the message is ensured.

PGP is based on a web of trust, where each user has different degrees of
trust towards the public PGP key of other users known to him. For further
information about PGP, see [19].

3.2 Our Protocol

A BTTP

PGPa(ra)

f1

f7

f4

f5

f3

f2

f6

PGPttp(C,A,B,Te)

PGPx = Sign with own private key, encrypt with x’s public key

PGPb(C,A,B,Te,rb)

PGPttp(rb,c)

PGPttp(ra,c)

PGPa("OK") PGPb("OK")

Figure 1: Our in-line TTP protocol

We have created a prototype of the contract signing server (the TTP), which
handle the process of negotiating the contracts between the two signing parties.
We assume that all the contract signing parties are already registered at the
TTP with their public PGP keys. Figure 1 shows how the protocol works:

f1 – Alice (the initiator) sends a contract proposal C to the TTP along with
her own and Bob’s (the responder) identities (A and B). She also specifies how
long she and Bob can wait until signing the contract before it is invalidated
(Te).

f2 – The TTP verifies the signature. He then generates two random numbers;
rA and rB which will later be used to verify the ownership of Alice’s and Bob’s
private PGP keys. The random numbers is also used to bind the contract to
each party and to prevent replay. The TTP sends the contract, Alice and Bob’s
identities, the expiration time and rB to Bob.

f3 – The TTP then sends rA to Alice. Then there is a time window as long
as the time specified in Te, where Alice and Bob must decide whether they want
to sign the contract. If they don’t sign it within the limit of Te, the contract is
declared invalid by the TTP. The time window implies that message f4 and f5

might come in any order as long as they come within the time window.
f4 and f5 – If Alice and Bob decides to sign the contract, they return the

random number they received from the TTP along with a signature of a con-
catenation of the contract and the random number.

f6 and f7 – When the TTP has received both f4 and f5, he will send a
confirmation to Alice and Bob that the contract was signed if rA and rB received
in f4 and f5 matches those sent out in f2 and f3. The content of f6 and f7 are

6



the signed contract of both parties. These messages are also available via the
Web interface.

All messages during the protocol are signed and encrypted with PGP.
We acknowledge that this is not a protocol with general applicability, but a

proprietary application of non repudiation principles using PGP.

3.2.1 SDL Diagrams

Idle

Wait for f3

f3 Te expired else

1

1

A

wait for f7

f7 Te expired else

2

2
Verify

 contract

f1

Start Te

Decrypt r1
GPGSign C r1

f5

Stop Te

Idle

Verificaton on
server

Valid?
Contract
voided

Idle

Idle Yes

No

3

3

Valid?
No

Yes

Figure 2: SDL diagram for initiator (Alice)

idle

wait for f6

1

B

f6
Te expired else

1Verify contract
Start Te

f4

Verificaton on
server

Valid?

Idle

Contract
voided

Idle

f2

Decrypt f2
GPGSign C

Valid?

Yes

NoNo

Yes

Stop Te

Idle

Figure 3: SDL diagram for responder (Bob)

Figure 2, 3 and 4 are lightweight SDL5 descriptions of our first protocol.
SDL diagrams is that it makes it easy to see the potential weaknesses one must

5Specification and Description Language

7



idle

TTP

Start Te

Generate r1
Generate f2

f2

Contract
voided

r1 and r2
voided

Idle

f1

Generate r2
Generate f3

f3

wait for f5wait for f4

Parallel f4 f5 elseTe expired

Both f4 and f5
received

1

1

Idle

1

Generate f7Generate f6

Parallel

f6 f7

Idle

Parallel

Yes

No

Parallel

Figure 4: SDL digram of the TTP

consider when implementing the protocol. Deadlocks and endless loops are easy
to discover using such diagrams.

As we can see from Alice’s SDL diagram (figure 2), she will wait for the f3

message to arrive from the TTP within the limit of Te after she has sent the
message f1. Note that Te might be very long in a computer-perspective—maybe
several days. Te is therefore not an ordinary software timer which requires her
computer system to be idle while waiting, but rather the waiting period at the
TTP for the signatures from Alice and Bob. If both of them do not sign the
contract within the limit of Te, the TTP will invalidate the contract.

If Te expires before Alice receives the f3 message, she will assume the con-
tract has been voided, and go into idle state. She may confirm that the contract
has been voided by logging onto the TTP’s web site. If she receive any other
unexpected messages, she will just continue waiting. When the f3 message is
received, and she has sent her f5 message, she will start waiting for the confir-
mation message (f7) from the TTP. If this does not arrive before Te expires, she
will contact the TTP and ask whether the contract is valid. If it is, everything
is OK, and the contract has been signed. If the contract isn’t valid, the contract
is voided and the contract signing procedure is aborted. If she receives the f7

message, she should verify Bob’s signature, before stopping Te, and everything
is OK.

Bob’s SDL (figure 3) is in many ways identical to Alice’s (figure 2). It is
simpler, since the contract signing procedure will start when he receives the
f2 message from the TTP, hence the only message he have to wait for is the
confirmation message from the TTP. The procedure of controlling this message
is identical to Alice’s.

When the TTP receives the f1 message from Alice (figure 4), he will start
the Te timer, generate Alice and Bob’s random numbers and send both f2 and
f3. Then he will start waiting for f4 and f5. When both of them are received,
he will generate the confirmation messages (f7 and f8) and send them to Alice
and Bob. If Te expires before both f4 and f5 are received, the contract will be
voided.

8



3.2.2 Implementation

The TTP was implemented using Perl, a flexible script language capable of
performing the PGP and e-mail related operations needed by the prototype. The
Perl script interfaces with the free Linux-based PGP equivalent GNU Privacy
Guard (GnuPG), which is capable of properly signing and encrypting e-mails.

All participant data, as the contract, the signatures and their public PGP
keys are stored in a MySQL database. Every customer of the contract signing
server may log onto the PHP-implemented6 Web interface and access the status
of all of their signed contracts. The presentation of contract status does not
jeopardise the fairness of the contract signing, i.e., the contract will only have
status as “signed” if both parties have signed it.

3.2.3 Analysis

As shown in the description of our protocol (section 3.2), we propose a contract
signing protocol with an in-line TTP making use of PGP technology. This
protocol has several advantages. It uses PGP, meaning the contract signing
parties might use any e-mail client they like as long as it support PGP.

The combination of the time-window and the use of the TTP, implies that
none of the contract signers know whether or not the other part has signed the
contract in advance of his own signing. He can therefore not take advantage of
such a knowledge, i.e. fairness is achieved.

The contract signing process is also atomic, since the contract is either valid
or not valid at all after the time-window Te has expired.

The PGP signatures yield that the contract is durable when a participant
has signed the contract. If one of the participants should deny the validity of
the contract, the use of the TTP can prove the participant wrong since the TTP
has both signatures and the contract.

With the valid signatures of each party accountability is achieved. The TTP
is not able to generate keys for Alice and Bob to claim that the participants have
signed a fake contract. However, this accountability relies on PGP’s web of trust.
The participants can easily verify each others PGP keys without involvement of
the TTP.

There are also some weaknesses in this protocol. As shown in the SDL
diagrams (figures 2, 3 and 4), there are some points in the communication in
which Alice and Bob will wait for messages from the TTP. If Te expires before
the parties receive all their messages, they must contact the TTP to verify
whether or not the contract has been mutually agreed to. If they do not care
to do this, they risk believing that a signed contract not is signed nor valid.

Ensuring completeness has not been a high priority. However the use of
PGP ensures some level of completeness to the protocol, especially since every
message is both signed and encrypted using PGP. An adversary can therefor
not cause a protocol abort by intercepting and modifying messages. However
interception and withholding of a message may cause a protocol abort.

The most severe misuse the TTP can commit is withholding information
regarding the status of the contract. This implies that the TTP does not send
verification to the participants and that contract status is not published on the
Web. This can lead to confusion and faults about the contract validity and

6http://www.php.net

9



signing status. See section 2.3 for a protocol that solves this. In our protocol
we must trust that the TTP does this correctly.

The fact that the protocol requires an in-line TTP which communicates with
both parties during the entire contract-signing phase is a weakness. This is done
in such a way that the contract is readable in plain text for the TTP. Hence,
the protocol is not abuse-free. Improving the protocol and making it abuse-
free is fairly simple by introducing hashes and encrypting the protocol before
transferring it to the TTP.

3.2.4 Improvements

A BTTP

PGPttp(PGPb(C),A,B,Te, h(c))

PGPb(PGPb(C)A,B,Te,rb)

PGPttp(ra)

PGPttp(h(C), rb)

PGPb("OK")

PGPa(h(C), ra)

PGPa("OK")

f1

f7

f4

f5

f3

f2

f6

PGPx = Sign with own private key, encrypt with x’s public key

Figure 5: Our in-line, abuse-free TTP protocol

Based on our analysis of the contract signing protocol we proposed in the
beginning of section 3.2, we have redesigned it to take the discovered weaknesses
into account.

In an abuse-free protocol the TTP is not fully trusted by the participants.
The participants will therefor not trust the TTP to reliably obtain true pub-
lic key of the registered users. In the previous protocol the responsibility of
obtaining the true keys form the users falls on the TTP. In this protocol the
responsibility falls on the contract signing parties. When using this protocol,
Alice will encrypt the contract using Bob’s public key. She will also include a
hash of the contract. Other than the contract being sent encrypted, the mes-
sages f2 and f3 are equal to those in our first protocol (figure 1). Bob will read
the contract by decrypting it with is own private PGP key and then create a
hash value of the contract. He will then sign a concatenation of the hash and
the random number. Alice will sign her random number and the hash of the
contract. When both Alice and Bob has signed, the TTP will send a notification
to both of them, and they can check the signatures in the same way as they
could in the previous version.

Here only the participants know the plain-text of the contract and it can not
be read and abused by any other party, i.e. abuse-freeness.

4 Further Work and Conclusion

4.1 Further Work

What we have implemented is merely a prototype of the first protocol we pro-
posed. User friendliness is vital to a technology’s survival and while we believe

10



that our implementation of the first proposed protocol to be relatively easy to
use, a prototype of the second protocol will be difficult to implement in such
a way that the client only needs currently available e-mail clients. To improve
the user friendliness of the solution, creating special client-side software might
be necessary.

A further evolution of the protocol would be to implement ideas from OFEP
protocols (see section 2.3) to limit the TTP’s involvement in the protocol, which
is often a goal in protocols like these.

We have not conducted a thorough security analysis of the protocols pro-
posed. Even though weaknesses in the protocols might be found, we hope that
they still can be used to further build a solid contract signing scheme using
PGP.

Another aspect which is not covered here, is the implementation of the con-
tract negotiation phase, where both parties negotiate the content of the contract.

4.2 Conclusion

We have discussed different aspects around contract signing, where non-repudiation
is of paramount importance. We believe that a scheme which makes it possible
for individual users to securely sign contracts among each other will increase
the use of the Internet as a medium for contract signing. By using PGP, we
utilise an already proven secure method of e-mail messaging to facilitate easy
contract signing.

We have shown that it is indeed possible to achieve non-repudiation during
electronic contract signing in an e-mail based environment, without using any
specially crafted client side software specifically for this scheme.

11



References

[1] D. Tygar. Atomicity in electronic commerce. Internet Besieged, pages
389–406, October 1997.

[2] S. Micali M. Ben-Or, O. Goldrich and R. Riverst. A fair protocol for signing
contracts. IEEE Transactions on Information Theory, 36(1):40–46, 1990.

[3] David Molnar. Signing electronic contracts. Crossroads, 7(1):6–ff., 2000.

[4] Indrajit Ray and Indrakshi Ray. Fair exchange in e-commerce. SIGecom
Exch., 3(2):9–17, 2002.

[5] Jianying Zhou. Non-repudiation in Electronic Commerce. Artech House,
Inc., 2001.

[6] Donal O’Mahony, Michael Peirce, and Hitesh Tewari. Electronic Payment
Systems for E-Commerce. Artech House, Inc., 2001.

[7] Rong Du, Ernest Foo, Colin Boyd, and Brian Fitzgerald. Defining security
services for electronic tendering. In Proceedings of the second workshop on
Australasian information security, Data Mining and Web Intelligence, and
Software Internationalisation, pages 43–52. Australian Computer Society,
Inc., 2004.

[8] ISO 14516. Information Technology - Guidelines on the Use and Manage-
ment of Thursted Third Party (TTP) Services, May 1999.

[9] Ralph Merkle. Secure communications over insecure channels. CACM,
1978.

[10] S. Micali S. Even, O. Goldrich and A. Lempel. A randomized protocol for
signing contracts. Communications of the ACM, 28(6):637–647, 1985.

[11] William Stallings. Network Security Essentials: Applications and Stan-
dards. Prentice Hall, second edition, 2003.

[12] Juan A. Garay, Markus Jakobsson, and Philip MacKenzie. Abuse-free
optimistic contract signing. Lecture Notes in Computer Science, 1666:449–
466, 1999.

[13] Vitaly Shmatikov and John C. Mitchell. Analysis of abuse-free contract
signing. Lecture Notes in Computer Science, 1962:174+, 2001.

[14] B. Schneier J. Riordan. A certified e-mail protocol with no trusted third
party. In 13th Annual Computer Security Applications Conference. ACM
Press, 1998.

[15] M. O. Rabin. Transaction protection by beacons. Journal of Computer
and System Sciences, 27:256–267, 1983.

[16] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange
of digital signatures. IEEE Journal on Selected Areas in Communications,
18(4):593–610, 2000.

[17] Hiroshi Maruyama, Taiga Nakamura, and Tony Hsieh. Optimistic fair con-
tract signing for web services. In Proceedings of the 2003 ACM workshop
on XML security, pages 79–85. ACM Press, 2003.

[18] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. RFC 2440 OpenPGP
Message Format, November 1998.

[19] Simon Garfinkel. PGP: Pretty Good Privacy. O’Reilly, 1994.

12


