
TLS Extensions 

Project 

 IMT4101 - Network Security 

Spring 2004 

 

 
Ole Martin Dahl [ole.dahl@hig.no] 

Torkjel Søndrol [torkjel.soendrol@hig.no] 
Fredrik Skarderud [fredrik.skarderud@hig.no] 

Ole Kasper Olsen [ole.olsen@hig.no] 
 
 



Abstract 
This report will focus on extensions for TLS. We will start with a quick overview of the TLS 
protocol in section 1. We will here present the basics of the protocol, before we advance to a 
description of the TLS extensions which are proposed in the Internet community at the time of 
writing in section 2. Thus, section 1 will not contain a very detailed description of the TLS 
protocol and its messages, only enough to make a common base for further discussion about 
TLS extensions. Section 3 will round off the report with our own suggestions and vision for the 
future of TLS. 

Contents 
1 SSL and TLS ........................................................................................................................................3 

1.1 Introduction and the Goal of TLS ..........................................................................................3 
1.2 The Record Layer Protocol ......................................................................................................3 
1.3 The Handshake Protocol ..........................................................................................................4 

1.3.1 Setting up Encrypted Communication...............................................................................4 
1.3.2 Server Authentication ...........................................................................................................5 
1.3.3 Mutual Authentication ..........................................................................................................6 
1.3.4 Resuming a Session ...............................................................................................................7 

1.4 Other Protocols in TLS.............................................................................................................7 
1.4.1 Change Cipher Spec Protocol..............................................................................................8 
1.4.2 Alert Protocol.........................................................................................................................8 
1.4.3 Application Data Protocol ...................................................................................................8 

1.5 Pseudorandom Function...........................................................................................................8 
1.6 Current Cipher Suites in TLS ...................................................................................................9 

1.6.1 General Cipher Suites ...........................................................................................................9 
1.6.2 Kerberos Cipher Suite...........................................................................................................9 
1.6.3 Cipher Suites and Perfect Forward Secrecy.......................................................................9 

2 TLS Extensions .................................................................................................................................10 
2.1 Extended TLS Handshake......................................................................................................11 

2.1.1 Server Name Indication......................................................................................................11 
2.1.2 Maximum Fragment Length Negotiation ........................................................................12 
2.1.3 Client Certificate URLs.......................................................................................................12 
2.1.4 Trusted CA Indication ........................................................................................................13 
2.1.5 Truncated HMAC................................................................................................................13 
2.1.6 Certificate Status Request ...................................................................................................13 

2.2 Future Cipher Suites Based on Extensions ..........................................................................13 
2.2.1 OpenPGP Keys for TLS Authentication.........................................................................13 
2.2.2 Elliptic Curve Cryptography for TLS...............................................................................14 
2.2.3 Secure Remote Passwords for TLS Authentication .......................................................15 
2.2.4 Shared Keys in TLS.............................................................................................................16 

3 TLS’ Future ........................................................................................................................................17 
3.1 TLS version 1.1.........................................................................................................................17 
3.2 The Future of TLS...................................................................................................................17 
3.3 Visions .......................................................................................................................................18 

3.3.1 Biometric Authentication Extension ................................................................................18 
4 References ..........................................................................................................................................20 

 
 

 2



1 SSL and TLS 

1.1 Introduction and the Goal of TLS 
SSL was developed by Netscape in 1994 to provide secure communications between Web clients 
(browsers) and Web servers. It relies on certificates and public key cryptography for symmetric 
key exchange and authentication. TLS is in essence a standardised version of SSL v3.0, although 
TLS has enough minor additions and differences for the two versions to be incompatible. TLS 
may back down to a SSL v3.0 feature set if the client doesn’t support TLS. 
 
TLS provides an entirely new protocol layer between the transport layer and the application layer, 
dedicated for security. As a side effect, TLS may provide security for other applications than just 
HTTP. Providing a new protocol layer will not make the existence of SSL/TLS encryption 
entirely transparent to the user, as it is with for example IPSec where security is integrated with a 
core protocol layer (Internet Protocol), and support for TLS needs to be specially programmed 
into either the software application (i.e. the application layer), or it may be implemented as a part 
of the underlying protocol suite (TCP transport layer) for a more general solution. Integration 
into specific applications is by far the most common approach, like in all modern Web browsers. 
 
TLS consists of several protocols, often conceptually visualised in two layers. The record layer 
protocol acts as a bottom layer which encompasses all of the other protocols, of which the 
Handshake protocol is arguably the most important one. 
 

 
Figure 1: TLS Protocols 

1.2 The Record Layer Protocol 
TLS uses a record layer to encapsulate all data. It accepts all of the different messages the other 
TLS protocols send and wraps them in a record layer header before sending the packet further down 
to the transport layer. 
 
The record layer’s main task is to provide a frame for the other TLS protocols and to secure 
application data. It does this by wrapping the TLS message in a 5-byte header which declares 
what type of TLS protocol message is in the package, which version of SSL or TLS is used 
(versions 3.0 and lower are SSL, version 3.1 is TLS) and how long the message is. The record 
layer can then add a message authentication code (MAC) to the message, then compress and encrypt it 
if required. 
 
The TLS specification opens for use of one of two message digest algorithms when generating 
the MAC, namely Rivest’s MD5 [RFC 1321] and the US Government’s SHA-1 [FIPS PUB 180-

 3



2]. The MAC is appended to the application data, and then the whole message including the 
MAC is encrypted. The MAC also protects, in addition to the application data, the record layer 
header in the TLS message which contains TLS version numbering, message length and more, 
even though that part of the message is not encrypted. 
 
The MAC is not simply a hash value of the message. The TLS specification requires the use of 
HMAC (Hashed Message Authentication Code) [RFC 2104], which details a specific algorithm in 
which to use the chosen hash function several times along with a secret key. The HMAC 
algorithm has been carefully scrutinised by the cryptographic community and is considered to be 
a very good way to use hash functions to create a good cryptographically secure MAC. 
 
Note that the SSL version 3.0 specification does not specify the HMAC for use as a MAC, but 
rather a MAC based on the HMAC draft. This is one of the biggest differences between the SSL 
version 3.0 and TLS version 1.0 specifications. 
 
As mentioned, the record layer compresses and encrypts data. Because of the way this is 
implemented, when receiving packages the TLS layer needs to know that the packages arrive in 
the correct order to be able to successfully decrypt the data. This means that TLS requires an 
underlying transport protocol with such features, e.g. TCP. 

1.3 The Handshake Protocol 
The handshake protocol is responsible for negotiating cipher suites and in general setting up a 
connection between to parties. The handshake can be done in several different ways, depending 
on the requirements of the connection. Most often the server needs to be authenticated, but not 
necessarily.  

1.3.1 Setting up Encrypted Communication 
When a client wishes to establish a secure channel between itself and a TLS-capable server, the 
first thing it sends is the ClientHello message. Among other things, the ClientHello contains a list of 
the cipher suites the client supports. Upon receiving the ClientHello, the server will answer with 
the ServerHello message. In the ServerHello message, the server tells the client which cipher suite it 
has chosen for use with this connection. In TLS the server is required to select the first cipher 
suite it supports from the prioritised list offered by the client. There is however no such 
requirement in SSL. In other words, if the server is using SSL, it can—without violating the 
specification—choose the client’s lowest ranking cipher suite. 
 
The communicating parties are now ready for key exchange. The server initiates this by sending 
the ServerKeyExchange message. This message’s contents depend on which cipher suite was chosen, 
but usually it contains the server’s public key. The server then ends its part of the negotiation 
with the ServerHelloDone message. 
 
The client will then generate a so-called premaster secret. The premaster secret is later used for 
creating the master secret, which again is used to derive various required values for symmetric 
encryption. This includes, but is not limited to, session keys and initial vectors. For generation of 
the master secret and subsequent secrets, the pseudorandom function (PRF) is used (see section 1.5). 
In the case of RSA key exchange, the client encrypts the premaster secret with the server’s public 
key, and then sends it in the ClientKeyExchange message. Both server and client are now capable of 
deriving the session key. The client and server then exchange the finishing messages which signal 
the initiation of encrypted communications. These messages are the ChangeCipherSpec message 
which signals that the key negotiation is complete and the Finished message which contains a 
summary of what was just agreed. The involved parties can then verify that the negotiation was a 
success. 
 

 4



If the negotiating parties agreed on using Diffie-Hellman for key exchange, the ClientKeyExchange 
message will not contain an encrypted premaster secret, but rather the client’s public Diffie-
Hellman value needed by the server for calculating the same premaster secret as the client.  
 
Figure 2 shows an overview of this handshake. 
 

 
Figure 2: Handshake protocol (no authentication) 

1.3.2 Server Authentication 
Notice that in section 1.3.1, we never authenticated neither the client nor the server. All that was 
done was setting up an encrypted communication channel between a server which possessed a 
public and private key and a client. The communication was, in essence, anonymous and 
therefore wide open to a typical man-in-the-middle attack, where an adversary impersonates 
another entity. 
 
To authenticate a server, we need to involve a trusted third party; enter the certificate. A 
certificate is a block of data which contains a server’s public asymmetric key (at least in the case 
of RSA key exchange), and proves that a given server is the server it claims to be. The certificates 
are issued by a certificate authority, which has to be unconditionally trusted by the client. The 
validity of a site’s certificate can be verified as the certificate is signed by a trusted certificate 
authority. This way one can verify signatures up the certificate chain to finally be able to verify 
that a site’s certificate is valid. 
 
For a client to be able to authenticate the server, we’ll need to introduce one new TLS message, 
namely the Certificate, and we need to modify the contents of the ClientKeyExchange message. The 
Certificate is sent in place of the ServerKeyExchange message, as a certificate will both authenticate a 
server and contain the server’s public key (alternatively fixed Diffie-Hellman public values). It is 
up to the client to verify that the certificate is valid and that the certificate belongs to the entity it 
is communicating with. By knowing the public key of the most common and trusted certificate 
authorities, the client can validate the signature on the certificate using asymmetric cryptography 
(typically this is done by using RSA). 
 
In the ClientKeyExchange message the client encrypts the session key with the public key contained 
in the server’s certificate. This way the server has to prove that it possesses the private key 
companion of the public key in the certificate to gain access to the session key. Only now is the 
server authenticated.  

 5



 
See Figure 3 for an overview of the handshake with server authentication. 
 

 
Figure 3: Server authentication. 

1.3.3 Mutual Authentication 
Due to the nature of the World Wide Web it is most important to authenticate the server, 
especially in cases with e-commerce involved. However, in some cases, a two-way authentication 
is desirable, or even required. 
 
The protocol is basically the same as in section 1.3.2, with the exception that after the server has 
sent Certificate, it also sends a CertificateRequest message. This will prompt the client to provide a 
certificate of its own to prove its identity towards the server. The client then sends its own 
Certificate message. Note that even though the Certificate message sent by the server made the 
ServerKeyExchange message redundant, the client still needs to send ClientKeyExchange. The reason 
for this is that the ServerKeyExchange message contained the server’s public key which was to be 
used for symmetric key exchange. The ClientKeyExchange message on the other hand contains the 
symmetric session key itself, and thus needs to be sent. 
 
As with the server in section 1.3.2, the client too needs to prove that it possesses the private key 
companion to the public key in the certificate. This is done by sending the CertificateVerify 
message. It contains a summary of previous events, digitally signed with the private key. The 
server can then check if the events truly happened, and then verify the message by using the 
public key in the certificate. The client has now proven its identity towards the server. 
 
Although it is rarely used, it is also possible to only authenticate the client. This goes to show the 
great flexibility of TLS. 
 
See Figure 4 for an overview of a mutual authentication handshake. 
 

 6



 
Figure 4: Client and server authentication. 

1.3.4 Resuming a Session 
A client and server may resume a previously negotiated session. To reduce the overhead of a full 
handshake which requires time expensive public key calculations, the specifications provide a sort 
of truncated handshake for resuming a session. The client sends along the session ID which was 
generated during the last session (or the session the client wishes to resume) in the ClientHello 
message. If the server accepts the resumption of the session, it replies with a ServerHello 
containing the same session ID. The handshake is concluded by exchanging ChangeCipherSpec and 
Finished messages. 
 
If the server for some reason does not wish to resume the session, it can just generate a new 
session ID to pass along in the ServerHello message. A full handshake will then follow. 
 
Figure 5 shows the truncated handshake for resuming a session. 
 

 
Figure 5: Handshake when resuming a connection. 

1.4 Other Protocols in TLS 
In addition to the handshake protocol, there are defined two more protocols in TLS, along with 
what are called the application protocols. 

 7



1.4.1 Change Cipher Spec Protocol 
The ChangeCipherSpec message is used to change from one cipher strategy to another, most 
notably from no encryption to encryption. The change cipher spec protocol consists only of the 
ChangeCipherSpec message, which is a one-byte message, containing the value “1”. As one can see 
from section 1.3.1, the message can be seen as a part of the handshake, but because of its 
importance, it is defined as its own protocol. 

1.4.2 Alert Protocol 
The alert protocol is used for emergency messages which signal an error or other faulty condition 
to the other communicating party. The alert protocol consists of one specific type of message, 
which has two data fields: one field for indicating the alert level (severity level), and one which is an 
alert description. The alert level can be one of two values; warning (indicated by the number 1) or 
fatal (indicated by the number 2). A fatal alert will require the parties to immediately bring down 
the communication link, thus terminating the current TLS session and discarding any secrets 
associated with it (session identifier, keys, premaster and master secrets, etc). Upon receiving a 
warning alert, the parties may decide whether or not to terminate the session. The session may 
however not be used in future connections. 
 
In the SSL specification there are defined 10 different alerts which may be used as alert 
description. The TLS version 1.0 specification adds a host of new alerts, divided into one closure 
alert and 22 error alerts. The TLS Extensions specification [RFC 3546] adds another 5 error alerts. 
In TLS, both of the communicating parties are required to send the closure alert (close_notify) 
upon the finalisation of the session so that both parties know that the session has been properly 
ended, thus avoiding truncation attacks where an attacker may prematurely manage to terminate 
the session. 

1.4.3 Application Data Protocol 
The application data passed down from the application layer is taken care of by the record layer. 
The application data is fragmented and compressed, then encrypted as per negotiated cipher 
specs the same way as TLS messages before being sent down to the transport layer. 

1.5 Pseudorandom Function 
The PRF is one of the most notable differences between SSL version 3 and TLS. Whereas SSL 
used a number of MD5 and SHA-1 iterations to generate key material from the premaster secret, 
the PRF in TLS uses repeated rounds of HMAC with both MD5 and SHA-1 as underlying 
message digest algorithm. 
 
The objective of the PRF is to expand a relatively short input to a longer, cryptographically 
pseudorandom output. In TLS, this is used when expanding the premaster secret into a master 
secret, and then expanding the master secret to be able to derive different session keys, MAC 
secrets and initial vectors. The PRF is also used in the Finished message of the handshake 
protocol. 
 
The PRF is defined as  
 

 
PRF(secret, label, seed) = P_MD5(S1, label||seed) XOR P_SHA-1(S2, label||seed) 

where secret is the secret which are to be expanded (e.g., the premaster secret), label is an 
identifying text string and seed is used to as a salt to the function (e.g., nonces sent between client 
and server in the ClientHello and ServerHello messages). P_MD5 and P_SHA-1 indicates repeated, 
concatenated HMAC rounds of the specified algorithm and is the expansion functions of the 
PRF. S1 and S2 are each one half of the secret. 

 8



1.6 Current Cipher Suites in TLS 

1.6.1 General Cipher Suites 
The TLS specification opens for TLS to support a large number of symmetric encryption 
algorithms and key sizes, along with various algorithms for key exchange and MAC generation. 
 
In TLS version 1.0 the supported symmetric ciphers as defined by [RFC 2246] are: 3DES, DES, 
IDEA, RC4 and RC2, but due to the modular nature of the TLS specification’s cipher suite 
definitions other ciphers like AES are in quite common use in current implementations. AES in 
TLS is described in [RFC 3268], and is seeing a wider and wider implementation in current 
applications supporting TLS and is currently considered to be the most secure symmetric 
encryption algorithm alongside 3DES. The MACs defined by [RFC 2246] are MD5 and SHA-1. 
 
As long as a cipher suite does not require additional or modified handshake messages anyone is 
in theory free to add a cipher suite to TLS. This is done by issuing an RFC detailing the 
implementation of the suite, for example as done with AES. 
 
In the TLS specification only one cipher suite is regarded as mandatory, namely the 
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA suite. This suite uses ephemeral Diffie-
Hellman with Diffie-Hellman parameters in a certificate signed by using DSS for key exchange 
and authentication. Further it uses three DES passes (Encrypt-Decrypt-Encrypt with three 
different keys) using the CBC operational mode for encrypting traffic and SHA-1 in the HMAC 
for MAC generation. 
 
In the TLS version 1.1 specification which is still a work in progress, the mandatory cipher suite 
has been changed to TLS_RSA_WITH_3DES_EDE_CBC_SHA (which uses RSA for key 
exchange and authentication, and the same algorithms for encryption and MAC as the suite in the 
TLS version 1.0 specification). 

1.6.2 Kerberos Cipher Suite 
It is possible to use Kerberos [RFC 1510] as a cipher suite instead of the public key solution with 
certificates. Using Kerberos is often preferable in organisations that already have established 
authentication systems based on symmetric cryptography. With Kerberos in TLS it is possible to 
achieve mutual authentication and establishment of a master secret without using the traditional 
certificate approach.  
 
The negotiation of using Kerberos is done through the client and server hello messages. The 
server’s certificate, the client’s CertificateRequest and the ServerKeyExchange is skipped. This is done 
because the master secret will be generated using the client’s Kerberos credentials. The client 
must first obtain a service ticket for the TLS server from the Kerberos server. The pre-master 
secret is then encrypted under the Kerberos session key and sent to the TLS server along with 
the Kerberos credentials. Once the ClientKeyExchange message is received, the server’s secret key 
is used to decrypt the credentials and extract the pre-master secret. Then the master key is 
derived from the premaster secret. Mutual client-server authentication is achieved, because the 
TLS server proves the knowledge of the master secret in the finished message.  
 
The use of Kerberos in TLS is almost exactly as using an ordinary public key algorithm in TLS. 
No new messages are necessary in the TLS protocol.   

1.6.3 Cipher Suites and Perfect Forward Secrecy 
In the attribute perfect forward secrecy (PFS) lies that if the long term secret (e.g., Diffie-Hellman 
public values) of a server is compromised, an attacker will not be able to decrypt previously made 

 9



encrypted communication. In other words, an attacker who knows a long term secret will not be 
able to reconstruct previous session keys if PFS is provided. 
 
It is important to be aware that not all cipher suites in SSL and TLS provides PFS. When using 
RSA, the session key is encrypted with the server’s public RSA key. Obviously, it follows that if 
the server’s private RSA key is compromised, an attacker who has been monitoring and storing 
traffic will be able to decrypt all information needed for deriving the session key. It follows that 
all past communication is compromised. 
 
To obtain PFS in TLS, a key exchange in addition to the certificate will have to be done. This 
way the peers will both be able to authenticate each other and provide either ephemeral RSA keys 
or ephemeral Diffie-Hellman parameters. It is then these keys or parameters which are used in 
either premaster secret exchange (in the ephemeral RSA case) or premaster secret calculation (in 
the ephemeral Diffie-Hellman case). 

 
Figur 6 - Mutal authentication and PFS 

 
The bottom line is that with careful selection of cipher suites, perfect forward secrecy is 
obtainable in SSL and TLS. The TLS version 1.1 draft [Dierks] recommends that users wanting 
PFS should use only cipher suites based on ephemeral Diffe-Hellman. 
 
Note that while PFS makes sure past session keys are left uncompromised, future session keys 
are still compromised if the server’s long term secret is leaked, in addition to that the connection 
is wide open for man-in-the-middle attacks. 

2 TLS Extensions 
[RFC 3546] describe several extensions to TLS version 1.0 that most likely are going to be 
implemented in the future. The main focus of [RFC 3546] is to extend functionality through the 
TLS protocol message formats. The main goals for TLS extensions is directed against minimising 
use of bandwidth in constrained access networks and conservation of the clients need for 
memory. 
 
The specific proposed solutions in [RFC 3546] are: 

 10



• Allowing the clients to send the server name to the TLS server. This is practical for 
servers on a single network address that provide several "virtual" servers. See section 
2.1.1. 

• Making it possible to negotiate the maximum fragment length to be sent. Small fragment 
size is often required in environments with low memory clients and in networks with low 
bandwidth. See section 2.1.2. 

• Conserving memory on the clients through use of certificate URLs instead of storing 
certificates on the client. See section 2.1.3. 

• Make it possible to inform the server about which CA root keys each clients have. This to 
prevent handshake failures in communication with clients who store small amount of CA 
root keys because of limited memory. See section 2.1.4. 

• Implement the possibility of using truncated MACs for integrity control. This to conserve 
bandwidth when sending MACs over the network. See section 2.1.5. 

• Allow clients and servers to negotiate that the server can send client certificate status 
information during the TLS handshake. With client certificate status information it is 
possible to avoid sending a rather large Certificate Revocation List (CRL) over the 
network and therefore save bandwidth. See section 2.1.6. 

 
When applying extensions to TLS it is important that the new versions are backwards compatible 
with current and previous versions of TLS version 1.0. In [RFC 3546] this problem is primary 
solved by implementing a new set of extended client hello messages. TLS version 1.0 servers will 
accept extended client hello messages, even if the server does not understand the extensions. 
[RFC 3546] also only propose extensions that don’t need new mandatory responses from a TLS 
server. So if the server only supports TLS version 1.0 the client just won't get the extensions to 
work, in other words the server won't reply with an extended server hello message.  
 
There are also many proposed internet drafts on extensions for the new TLS version 1.1 or other 
future versions. Beneath follows an introduction to some extensions that are proposed. 

2.1 Extended TLS Handshake  
All the TLS extensions suggested in [RFC 3546] affects the ClientHello and/or the ServerHello 
messages sent between the client and the server during the TLS connection phase. Beneath are 
brief descriptions of the new extensions. 
 
The extended client hello message format contains an additional data field. This field contains a 
list of available extensions. It tells the particular extension type in one part of the field, and the 
extension data in another. When a server receives an extended client hello, there are three 
possibilities that could occur.  
 

• The server supports TLS extensions and replies with an extended server hello. 
• It may choose not to reply with the extended server hello message. 
• The server doesn’t support extensions, thus it will reply with the standard ServerHello. 
 

The client may in the last two cases choose whether to proceed without extensions or abort the 
handshake. 
 
Below we have described some of the proposed extensions and their uses. 

2.1.1 Server Name Indication 
Here the extension type will be server_name, and the extension data field will contain a 
ServerNameList. The server name would be the DNS hostname for the particular server. IPv4/v6 
addresses are not permitted. DNS is by now the only supported server/host name, but it’s 

 11



possible for other name types to be added later. When a server receives an extended client hello 
with extension type server_name and returns with an extended server hello, the server extension 
type shall be server_name, and the extension data field shall be empty.  

 
This extension is intended to allow the client to tell the server which server it is contacting. This 
may be desirable for the clients to facilitate secure connections to servers that host multiple 
‘virtual’ servers at a single underlying network address. 
 
[Banes] describe an update to this extension, where one can use an email address in place of the 
server name to enhance the usability of this extension, however this is currently only a draft and 
considered work-in-progress. 

2.1.2 Maximum Fragment Length Negotiation 
This extension specifies a way to give plaintext fragments a predefined fixed length, different 
from the original size of 214 bits. The extension type in the extended client hello will be 
max_fragment_length. The extension data field shall contain the desired fragment length. The 
allowed values for this field are 29, 210, 211, and 212 bits. Servers that receive an extended client 
hello containing a max_fragment_length extension, returns an extended server hello with extension 
type max_fragment_length, where the extension data shall contain the same fragment length as the 
client requested. If the server does not support this extension, or does not allow usage of this, it 
returns a regular server hello, and if the server receives an extended client hello with an illegal 
desired fragment length, it must abort the handshake with an illegal_parameter alert. This applies 
the client as well.  

 
Once the maximum fragment length has been successfully negotiated, they immediately start to 
send fragments with the negotiated length. This means that even the handshake messages will be 
sent with the new fragment length. This extension is suggested as an option for clients with 
memory limitations and bandwidth limitations.  

2.1.3 Client Certificate URLs 
This extension will make it possible for clients to authenticate themselves to the server without 
possessing their certificates on their own computer. The way to obtain this is to allow clients to 
pass URLs to where the certificates are located instead of keeping the certificates local and 
passing them during the TLS handshake as defined in TLS version 1.0. The main goal for this 
extension is to save memory on the clients. If this extension is desirable, clients sends an 
extended hello message with extension type client_certificate_url. The extension data field in this 
case shall be empty. The server may then indicate that it is willing to accept certificate URLs by 
include the client_certificate_url extension with an empty extension_data field in the extended server 
hello message.  
 
When the extended hellos are successfully completed, the client may send certificate URLs in 
place of a certificate. This way of handling authentication introduces a whole new aspect of 
security. To do the authentication the server may now contact other servers on other URLs to 
authenticate the clients trying to set up a TLS connection. Even though it may be extremely easy 
for an attacker to gain access to a client’s certificate, the client must still prove the ownership of 
the certificate by knowing the private key companion to the public key which is stored in the 
certificate. 
 
Trust, correct servers and correct URLs are keywords that must be well thought through before 
implementing and using such an extension.  

 12



2.1.4 Trusted CA Indication 
A client that only contains a small amount of CA root certificates, often due to a small memory 
limitation, may want to tell the server which CA he possesses to avoid repeated handshake 
failures. To do this, the client may include an extension called trusted_ca_keys in the client hello. 
The extension_data field will then contain TrustedAuthorities. The TrustedAuthorities data is a list of 
CA root certificates that the client possesses. When a server receives the client hello message 
containing this trusted_ca_keys extension, it may use this information when choosing an 
appropriate certification chain to return to the client. The server will then include a trusted_ca_keys 
extension in the extended server hello message. Here the extension_data field shall be empty.  

2.1.5  Truncated HMAC 
The TLS cipher suite uses either an MD5 or a SHA-1 based HMAC to authenticate record layer 
communications. The entire output from the HMAC is used as the MAC tag, but it could be 
desirable to save bandwidth by truncating the HMAC output to 80 bits when the MAC tag is 
created. For the negotiation of 80 bits truncated HMAC, the client may include a truncated_hmac 
extension in the client hello message. When a server receives this message, he may agree to use a 
truncated HMAC, and return a truncated_hmac extension in the server hello message. This 
extension will not have any effect if there are added new cipher suites that don’t use HMAC and 
the session negotiates one of these suites. If there has been negotiated a HMAC truncation, then 
this is passed to the TLS record layer along with the other negotiated security parameters.  Then 
the client and server must use truncated HMACs during the session. This means that the 
CipherSpec.hash_size is set to 80 bits and only the first 80 bits of the HMAC output are transmitted 
and checked. This extension does however not affect the calculation made by the PRF as part of 
handshaking or key derivation. Using this extension will most likely not affect the security aspects 
in the extended TLS protocol. 

2.1.6  Certificate Status Request 
In order to avoid transmissions of CRLs and save bandwidth, clients may want to use a 
certificate-status protocol (like Online Certificate Status Protocol (OCSP) [RFC 2560]) to 
instantly check the validity of server certificates when needed. By using this extension, this 
information can be sent in the TLS handshake, and therefore save recourses. The clients then 
may include an extension called status_request in the client hello message to indicate their desire to 
receive certificate status. Then the extension_data field should include a CertificateStatusRequest. The 
CertificateStatusRequest will include a list of OCSP responders that the client trusts. If the server 
receives a client hello message including this extension, it may then return a suitable certificate 
status response to the client along with their certificate. The response is returned with the 
certificate by sending a CertificateStatus message. If this message is sent, it must contain a 
status_request extension, where the data_field will contain an OCSP_response which includes a 
complete OCSP response. Only one OCSP response may be sent back to the client. 

2.2 Future Cipher Suites Based on Extensions 
There have been proposed several new cipher suites for TLS which are based on TLS extensions, 
that is, they make use of the extended handshake. None of the following cipher suites are more 
than work-in-progress, but they are presented here as examples of what kinds of cipher suites the 
future will bring TLS. 

2.2.1 OpenPGP Keys for TLS Authentication 
There is an interesting proposed internet-draft on applying OpenPGP keys for TLS 
authentication by [Mavroyanopoulos]. The main goal is of course to implement the use of a new 
trust model to TLS, more specific the "web of trust" model of PGP. As has been described in 
earlier sections, TLS uses standard certificate based X.509 PKI framework for authentication. An 
OpenPGP implementation will be a new way of authenticating with the well used and tested 

 13



PGP approach. To use OpenPGP the hello messages must include some information. 
[Mavroyanopoulos] introduces a new extension named cert_type. The cert_type value in the client 
and server hello messages must include OpenPGP as an alternative. If only the X.509 certificates 
are supported by the server the field may be omitted or the server may terminate the connection 
with an unsupported_certificate alert message. If the OpenPGP certificate type is agreed upon by the 
client and server an OpenPGP key must be included in the certificate message. The OpenPGP 
key must contain a public key for the selected key exchange algorithm, RSA public key for 
encrypting and DSS-signed Diffie-Hellman public parameters or RSA key for signing. The 
internet draft also propose sending the OpenPGP fingerprint in the certificate, instead of sending 
the entire OpenPGP key, this to conserve bandwidth and memory requirements. The 
implementation of OpenPGP in TLS should be straightforward and introduce the "web of trust" 
model into TLS. 

2.2.2 Elliptic Curve Cryptography for TLS 
Using ECC for public-key crypto system is attractive, especially in environments with low 
bandwidth and memory constrained clients, because ECC offers high security with relative small 
key size compared to today’s asymmetric crypto systems. Based on [Gupta] and [Lenstra], Table 1 
shows a comparison of key size, based on the best-known algorithms for attacking cryptographic 
algorithms. Smaller key sizes result in power, bandwidth and memory conservation. 
 

Symmetric DH/DSA/RSA Elliptic Curve (ECC) 
80 1024 163 
112 2048 233 
128 3072 283 
192 7680 409 
256 15360 571 

Table 1 - Keysize comparison (in bits) 

The Internet-Draft “ECC Cipher Suites for TLS” [Gupta] propose how to use elliptic curve 
cryptography in TLS. More specific the use of the Elliptic Curve Diffie-Hellman key agreement 
scheme and the use of Elliptic Curve Diffie-Hellman certificates and Elliptic Curve DSA for 
authentication. The use of elliptic curve cryptography may the future of secure communication.  
 
To implement ECC in TLS, [Gupta] proposes the introduction of two new TLS extensions, 
namely the Supported Elliptic Curve Extension and the Supported Point Formats Extension. The 
extensions enumerate which curves the application supports and which point formats for point 
compression it supports. Encrypting a message with ECC may easily increase the message length 
by a factor of four [Stinson]. Therefore a trick called point compression is used to reduce the 
storage requirement for the points on an elliptic curve. 
 
[Gupta] proposes to use ECC in conjunction with Diffie-Hellman, both for key exchange and 
certificate signing. The Diffie-Hellman and ElGamal cryptosystems are the two systems which 
are best suited for ECC application, and the Diffie-Hellman algorithm is pretty straight-forward 
(at least as far as that term can be used with regards to ECC) to convert from ordinary modular 
arithmetic to ECC calculations. All modular multiplication can be converted to addition of points 
on an elliptic curve. Similarly, all modular exponential calculations can be converted to 
multiplications of points on an elliptic curve. 
 
The draft proposes a set of key exchange and authentication algorithms, all based on Elliptic 
Curve Diffie-Hellman and various certificate signing algorithms. 

 14



2.2.3 Secure Remote Passwords for TLS Authentication 
Today TLS uses PKI or Kerberos for authentication. These authentication methods are not well 
suited for the applications now being adapted to use TLS (like IMAP or FTP). These protocols 
are designed to use usernames and passwords for authentication. Being able to use usernames 
and passwords to authenticate the TLS will provide more security to the TLS connection than 
implementing a PKI in certain situations. 
 
SRP (Secure Remote Password) [RFC 2945] allows the user to type a username and password 
without having to worry about eavesdropping [Taylor]. It uses a shared secret that can be used to 
generate encryption keys. 
 
The SRP protocol can be implemented using the standard TLS handshake protocol, however 
with some modifications: 
 

 
Figur 7: The SRP Protocol 

 
Variable names: 

N, g  group parameters (prime and generator) 
s salt 
B, b  server's public and private values 
A, a  client's public and private values 
I  user name 

 
The mechanism for re-using sessions for new connections and key renegotiations for existing 
connections will still work with the SRP protocol. When a client wants to re-use a session under 
SRP, it includes the SRP extensions that carry the username in the client_hello message.  It requires 
a full handshake sequence in case the server can’t or won’t allow re-use of the session.  
 
The protocol uses a unique verifier for the handshake, which is based on a salt (s), a username (I), 
the client’s password and the group parameters (N and g). The algorithm makes use of a SHA-1 
hash algorithm. 

 15



 
The verification of the user’s password is done without sending the password in any form to the 
server. The password and the other variables which have been transferred between client and 
server are used when both the server and the client each generate a premaster secret. That way, 
when we get to the Finished message, it will not decrypt properly if the premaster secrets of the 
server and client differ. If they differ, the client has provided a wrong password, and no session 
will be set up. 

2.2.4 Shared Keys in TLS 
“Use of Shared Keys in the TLS Protocol” is an intenet-draft by [Gutman] that proposes use of 
symmetric keys instead of using CPU-intensive public-key algorithms. The use of symmetric keys 
that are shared in advance also have the benefit that it provide cryptographic authentication of 
both server and client without the use of certificates. This approach will simplify the TLS 
handshake protocol. In environments with little CPU power i.e. mobile devices the use of today’s 
public-key-based handshakes takes a lot of recourses and time. If the hosts in the environments 
already have pre-shared symmetric keys it would be preferable to use these keys instead of 
computing new ones in the TLS handshake. Pre-shared keys may also be more convenient from a 
key management point of view. E.g. in networks where the connections is configured manually in 
advanced it may be easier with shared keys than the use of certificates or in another case where 
the communicating parties already have a mechanism for setting up a shared secret key.  
 
With a pre-shared secret the TLS master secret can be derived from the shared key instead of 
deriving it through the handshake protocol. The idea is to make use of the handshake resume 
instead of the full handshake with public key exchange. The shared symmetric key is just seeded 
into the TLS session cache. When the client connects, the session resume takes over and the 
client and server “resume” the “phantom” session by seeding the cache.  
 
The TLS master key is 48 byte, this is to big to be covered by a single shared symmetric key. To 
use the shorter symmetric keys, the TLS pseudorandom function must be used to produce the 
master key which is seeded into the session cache. When the PRF function is used with the 
shared symmetric key the result is a pre-master secret. Then nothing else is needed to be changed 
or implemented for using pre-shared keys in TLS. The use of a pre-shared key also opens up for 
using passwords or pass phrases instead of symmetric/public keys. This is of course less secure 
then symmetric or public keys, but it could be preferable in some environments. See section 
2.2.3. 
 
“Pre-Shared Key Ciphersuites for TLS” is another Internet draft by [Eronen] and H. Tschofenig 
published February 6, 2004. The draft specifies new cipher suites to be used in a pre-shared 
symmetric key TLS setting. Here the pre-master secret is build as follows: concatenate 24 zero 
byte, a SHA-1 hash of the pre-shared key (20 byte) and at last 4 zero byte. In other words only 
the HMAC-SHA1 part of the TLS pseudorandom function is used. Since the pre-shared secret 
key can be of variable length depending on algorithm used the SHA-1 hash is used to always end 
up in a 48 byte pre-master secret. The proposed symmetric chipersuites are as follows: 
 
 TLS_PSK_WITH_RC4_128_SHA 
 TLS_PSK_WITH_3DES_EDE_CBC_SHA 
 TLS_PSTK_WITH_AES_128_CBC_SHA 
 TLS_PSTK_WITH_AES_256_CBC_SHA 
 
In this draft the use of the pre-shared keys is implemented through a slightly modified handshake 
protocol. The handshake just doesn’t include the values: certificate, certificaterequest and certificateverify 
in the client/server packet exchange since they are no longer necessary. Since it’s likely that the 
both the server and client may have pre-shared keys with several different parties, the client 

 16



indicates which key to use by including a “pre shared key identity” in the ClientKeyExhange 
message. To help the client in selecting which identity to use, the server can provide a “pre-
shared key identity hint” in the ServerKeyExhange message. The format of the identity and identity 
hint can be as easy as a user name or a host name.  
 
Both the “Pre-Shared Key Ciphersuites for TLS” and the “Use of Shared Keys in the TLS 
Protocol” draft introduce a new important extension to TLS. With pre-shared keys in TLS the 
usability of TLS extends widely and it become possible to use the protocol other environments 
and settings than to days TLS version where only public key algorithms is supported in the 
handshake.   

3 TLS’ Future 

3.1 TLS version 1.1 
Version 1.1 of the TLS specification [Dierks] is mostly an attempt to clarify some things from the 
previous version and fix some minor flaws, but there are a couple of things which are of 
importance. 
 

• It acknowledges the existence of TLS extensions as defined in [RFC 3546]. 
• It informs implementers that TLS’ authenticate-then-encrypt approach may be open for 

chosen plaintext attacks when using some cipher suites. 
• It fixes vulnerabilities against different attacks on the CBC operational mode. 
• It changes the mandatory cipher suite’s key exchange and authentication algorithm from 

ephemeral Diffie-Hellman to RSA. 
• It recommends that 40 bit cipher suites should not be enabled by default in applications 

supporting TLS. 

3.2 The Future of TLS 
SSL was first implemented into Web Wide Web servers and browsers to secure communications 
between a server and clients. Today, HTTP traffic between a Web server and clients are still the 
main application of TLS. When speaking strictly amount of sites, online banking services and 
online shopping malls are most common. When operating at the maximum capacity of a one 
gigabit connection, a typical Web shop may have to do as many as 10 to 20,000 TLS handshakes 
per second, depending on the amount of data being returned on each request [Reynolds]. The 
process of going through such an amount of TLS handshakes is immensely expensive in terms of 
CPU time due to complex RSA calculations and master key generation. Not all servers are up to 
this task, which may result in extremely slow response times which again may result in lost 
revenues for the Web shop in question. The solution to this is of course doing the heavy 
mathematical calculations in hardware. Such hardware has existed for quite some time, and may 
work very well in most cases today. However, the need for TLS handshake processing will only 
increase with more applications of TLS, including other applications of TLS on the Web. When 
this happens, our current solutions may not cut it. As the thought of offloading the server’s main 
CPU with other dedicated processors is good, we might put more of the load on these secondary 
processors. That means doing more of the handshake processing off the main processor. This 
will then include all mathematical RSA calculations as today, but also more of the master secret 
generation based off of the premaster secret and TLS handshake message creation (including 
record layer wrapping). 
 
In the near future we believe it is very likely that TLS will enjoy more widespread acceptance in 
other applications than Web browsers. We have seen lately that the protection of personal 
information is increasingly important to the average user of Internet applications where 
confidentiality and integrity up until now has been totally ignored. The increased public 

 17



awareness of privacy protection and an aversion towards an even remotely Orwellian type of big 
brother society, we believe will dramatically increase the need for secure communications and 
encryption on the Internet. Some real life examples of such new applications of TLS are better 
securing of the authentication process of SMTP and POP servers, and securing of traffic on 
Internet Relay Chat networks and in peer to peer Instant Message protocols like MSN, ICQ and 
AIM. There should not be any major hurdles with regards to implementing TLS into applications 
which uses these protocols even today. 
 
Not only our personal computers are connected to the Internet. In a world where more and more 
of our everyday appliances are interconnected via the Internet, the need for confidential 
communication will dramatically increase. In such devices of limited hardware capabilities, TLS 
extensions which focus on decreased bandwidth usage will come to their right, in addition to 
special hardware capable of doing most of the logics involved in TLS handshake processing. 
 
It is easy to imagine the now almost clichéd refrigerator which connects to the local grocery store 
to order new milk bottles using a secure TLS connection to communicate the grocery store. After 
all—the amount of information one can infer from monitoring the refrigerator’s communication 
with the grocery can be quite a violation of a household’s privacy. 

3.3 Visions 
In this section we will give some suggestions on extensions and other improvements on the TLS 
protocol. 

3.3.1 Biometric Authentication Extension 
The intension of this suggestion is to improve authentication, and limit the use of PKI, 
certificates or passwords. We imagine using the TLS handshake as suggested in [RFC 3546], and 
use the extension_data_field in the extended_client_hello/extended_server_hello messages to perform the 
biometric authentication. The authentication procedure would be something like this: 
 
The client sends an extended_client_hello message including a live image captured with a standard 
web camera containing the user’s face. This is image1. The client stores image1 temporary. The 
client also sends a list containing which ciphers he prefers to use. Together with image1, he sends 
a hash of it to verify its authenticity. The server then creates a hash of the received image1 and 
compares it to the hash value that was sent. If they are equal it stores image1 temporary. 
Comparing the hashes is mainly to detect transfer errors. Then the server creates a challenge and 
sends it to the client along with the first cipher selection from the clients cipher list it supports in 
the extended_server_hello message. The challenge would be a random (possibly one-time) generated 
string that the user is asked to write down on a piece of paper in a given format, and hold it up in 
front of the web camera in a way that makes the web camera capture both the challenge and the 
user’s face in one shot. This is image2. The user has a limited period of time (like 10 seconds) to 
answer this challenge. Image2 is then sent to the server along with a hash of it in the certificate 
message in stead of a standard certificate. 
 
The server then creates a hash of image2, and compares the hash values. The server then performs 
a biometric verification on the facial images it has received from the user, comparing image1 with 
image2. Then it compares the response from the user with the challenge. If both the facial images 
are equal and the challenge/response is equal, the user is authenticated. It then creates a key 
derived from image1 and image2. This is the session key. The client does the same, and both the 
client and the server now knows the session key. This key is used to generate the key stream for 
the session. We achieve perfect forward security if the challenge is unique and the image sent 
from the client really was captured with the web camera and not a previously captured and used 
image. The secured connection is now ready. 
 

 18



This method only proves that the client remains the same during the handshake. To verify who 
the user is, a local biometric description of the clients must exist on the server. 
This protocol is also vulnerable for man-in-the-middle (MitM) attacks. To avoid this some sort of 
pre-distributed secret might be used. Another solution to avoid MitM attacks might be to 
establish a TTP who possesses faces of all TLS biometric extension users that might want to set 
up a connection to the server. When setting up a connection, the server will contact the TTP to 
receive the private key for the user authenticated from the received picture. Now only the server 
and the person on the picture (client) would know the private key or the secret. If the picture was 
of a MitM adversary, the server would look up his private key and not the correct key that the 
real client would posses. It is crucial at this point that the server authenticates to the TTP in some 
secure way. The protocol then continues very similar to what described above, but the session 
key will now be derived from both image1 and image2, together with the private key. This will 
eliminate MitM attacks between the client and the server. 
 
The Biometric Authentication Extension suggestion is hardly any real extension or suggestion of 
one, but rather a thought of technology which might be used in the future of TLS. 

 

 19



4 References 

[Banes] J. Banes, C. Crall, “Update to Transport Layer Security (TLS) Extensions”, 2003. 
http://www.ietf.org/internet-drafts/draft-ietf-tls-emailaddr-00.txt 

[Dierks] T. Dierks, E. Rescorla, “The TLS Protocol Version 1.1”, 2004. 
http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc2246-bis-06.txt 

[Eronen] P.Eronen, H. Tschofenig, “Pre-Shared Key Ciphersuites for TLS”, 2004. 
http://www.ietf.org/internet-drafts/draft-eronen-tls-psk-00.txt 

[FIPS PUB 180-2] NIST, “Secure Hash Standard”, 2002. 
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf 

[Gupta] 
V. Gupta, S. Blake-Wilson, B. Moeller, C. Hawk and N. Bolyard, “ECC Cipher Suites for 
TLS”, 2004. 
http://www.ietf.org/internet-drafts/draft-ietf-tls-ecc-05.txt 

[Gutman] P.Gutman, “Use of Shared Keys in the TLS Protocol”, 2003 
http://www.ietf.org/internet-drafts/draft-ietf-tls-sharedkeys-02.txt 

[Hollenbeck] Scott Hollenbeck, “Transport Layer Security Protocol Compression Methods”, 2003. 
http://www.ietf.org/internet-drafts/draft-ietf-tls-compression-07.txt 

[Lenstra] A. Lenstra, and E. Verheul, “Selecting Cryptographic Key Sizes”, Journal of Cryptology 14, p. 
255-293, Springer-Verlag New York, LLC, 2001. 

[Mavroyanopoulos] N. Mavroyanopoulos, ”Using OpenPGP keys for TLS authentication”, 2004. 
http://www.ietf.org/internet-drafts/draft-ietf-tls-openpgp-keys-05.txt 

[Reynolds] E. Reynolds, “The Increasing Demand for SSL/TLS Processing”, 2003. 
http://www.layern.com/SSLWP0001SSL02.pdf 

[RFC 2104] 
H. Krawczyk, M. Bellare, R. Canetti, ”HMAC: Keyed-Hashing for Message Authentication”, 
1997. 
http://www.ietf.org/rfc/rfc2104.txt 

[RFC 2246] T. Dierks, C. Allen, “The TLS Protocol Version 1.0”, 1999. 
http://www.ietf.org/rfc/rfc2246.txt 

[RFC 2537] D. Eastlake, ”RSA/MD5 KEYs and SIGs in the Domain Name System (DNS)”, 1999. 
http://www.ietf.org/rfc/rfc2537.txt 

[RFC 2560] 
M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams, “X.509 Internet Public Key 
Infrastructure – Online Certificate Status Protocol – OCSP”, 1999. 
http://www.ietf.org/rfc/rfc2560.txt 

[RFC 2945] T. Wu, “The SRP Authentication and Key Exchange System”, 2000. 
http://www.ietf.org/rfc/rfc2945.txt 

[RFC 3268] 
P. Chown, “Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security 
(TLS)”, 2002. 
http://www.ietf.org/rfc/rfc3268.txt 

[RFC 3546] 
S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, T. Wright, “Transport Layer 
Security (TLS) Extensions”, 2003. 
http://www.ietf.org/rfc/rfc3546.txt 

[Stinson] D. Stinson, “Cryptography – Theory and Practice”, Chapman & Hall / CRC, 2002. 

[Taylor] 
D. Taylor, T. Wu, N. Mavroyanopoulos, T. Perrin, “Using SRP for TLS Authentication”, 
2004. 
http://www.ietf.org/internet-drafts/draft-ietf-tls-srp-06.txt 

 

 20


	Abstract
	C
	SSL and TLS
	Introduction and the Goal of TLS
	The Record Layer Protocol
	The Handshake Protocol
	Setting up Encrypted Communication
	Server Authentication
	Mutual Authentication
	Resuming a Session

	Other Protocols in TLS
	Change Cipher Spec Protocol
	Alert Protocol
	Application Data Protocol

	Pseudorandom Function
	Current Cipher Suites in TLS
	General Cipher Suites
	Kerberos Cipher Suite
	Cipher Suites and Perfect Forward Secrecy


	TLS Extensions
	Extended TLS Handshake
	Server Name Indication
	Maximum Fragment Length Negotiation
	Client Certificate URLs
	Trusted CA Indication
	Truncated HMAC
	Certificate Status Request

	Future Cipher Suites Based on Extensions
	OpenPGP Keys for TLS Authentication
	Elliptic Curve Cryptography for TLS
	Secure Remote Passwords for TLS Authentication
	Shared Keys in TLS


	TLS’ Future
	TLS version 1.1
	The Future of TLS
	Visions
	Biometric Authentication Extension


	References

