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Protecting Sensitive Data on a PC by a Custom Algorithm

Abstract

To store secrets and sensitive data in secure ways is necessary in the modern life. Since
most hardware technologies used to store sensitive data are expensive for a single user,
it is very common to store this kind of data by the means of software or software im-
plemented encryption procedures. If for example the secret to protect is the secret key
in a Public Key Infrastructure environment it would be important to determine the best
way of storing it on a hard drive. It is also important to determine how secure the exist-
ing storing applications or available encryption algorithms are. A brief overview of the
most common methods and solutions for storing secrets, such as encryption algorithms
are given, and a proposal of a new stream cipher, its implementation and analysis are
presented in this thesis.

The stream cipher makes use of well known and understood techniques, such as linear
feedback shift registers, irregular clocking, and truth tables, as elements and building
blocks to achieve very high security and easy understanding of the fundamental structure
of the cipher.

The cipher is implemented in C#, and both the implementation and design of the
cipher is made to achieve high efficiency when running in software, especially on a stan-
dard 32 bit processor (CPU).

Cryptanalysis and thorough statistical testing are applied to the cipher to evaluate its
cryptographic strength and security.

Both the cryptanalysis and the statistical testing conducted on the cipher indicate that
the cipher is secure and has good statistical properties. Efficiency testing shows that the
cipher design is very fast in software.
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Sammendrag (Abstract in Norwegian)

Å kunne lagre hemmeligheter og sensitive data på en trygg måte er en nødvendighet i
dagens samfunn. Siden en stor menge av hardwareteknologi som tilbyr "sikker " lagring
av sensitiv data er dyrt for den enkelte bruker, er det veldig vanlig å benytte seg av pro-
gramvare eller software-implementerte krypteringsalgoritmer for å løse dette problemet.

Hvis for eksempel den sensitive informasjonen vi vil beskytte er den hemmelige nøkke-
len i et privat/offentlig nøkkelpar, er det viktig å finne den beste måten å lagre nøkkelen
på, hvis mediet som brukes er en PC med harddisk. Det er også viktig å vite noe om
hvor sikre og hvor bra eksisterende applikasjoner og krypteringsalgoritmer implementert
i software er for å få en viss trygghetsfølelse når det gjelder lagringen av sensitiv data.

En gjennomgang av noen av de mest kjente og brukte krypteringsalgoritmene i soft-
ware og andre metoder for lagring av sensitive data, samt forslag til et nytt stream cipher
for lagring av sensetive data på en PC, implementasjon og testanalyse er hovedpunktene
i denne masteroppgaven.

Ved å anvende godt kjente og analyserte teknikker, som for eksempel lineære shift
registre, iregulær klokking og sannhetstabeller som bygningsblokker for krypteringsalgo-
ritmen, er målet å oppnå høy sikkerhet og god forståelse for algoritmens struktur.

Algoritmen er implementert i C#. Både algoritmens implementasjon og struktur er
gjort med hensyn på å oppnå høy effektivitet i software. Spesielt for standard 32 bits
prosessorer som er mest vanlig i dagens standard datamaskiner.

Svakhetsanalyse og grundig statistisk testing er utført på algoritmen for å vurdere
algoritmens sikkerhet og styrke.

Både svakhetsanalysen og den statistiske analysen av algoritmen indikerer at den
virker sikker og har gode statistiske egenskaper. Praktisk utførte efektivitetstester viser
at algoritmen eksekveres raskt i software.
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1 Introduction

1.1 Topics Covered by This Thesis

Keeping secrets away from others is one of many aspects of information security. This is
essential in many scenarios to maintain good security and reliability, confidentiality and
it might even effect integrity. The topic of this thesis is the technical aspect and security
analysis of different methods used to protect secret or sensitive data on a PC. Different
cryptographic algorithms are described, attacks on these are discussed, and the process
of designing a stream cipher is presented. Security and efficiency metrics are applied to
this new custom cipher to perform its relevant assessments. A smaller goal for this thesis
is to determine if different kinds of software and methods designed to secure sensitive
data are good enough and reliable enough to store secrets.

Keywords:

Technology, cryptography, stream cipher, data processing, security architecture, Operat-
ing systems security, Code obfuscation, reverse engineering.

1.2 Problem Description

Many software and application developers do not produce hardware. When processing
sensitive data, many applications make use of solutions implemented only in software.
Hardware is often expensive for a single user both financially and regarding complexity
of use. Things also very often get more complex when combining software and hardware.
Therefore, many software distributors and applications store secrets in software or on a
hard drive to minimize costs and complexity for users and developers. Personal comput-
ers represent a hostile environment which raise questions about how good or how securly
it is possible to maintain confidentiality and integrity of sensitive information and secrets
such as passwords and private keys. This again raise questions on how responsible it is
to rely on software-based technology to store secrets and sensitive information.

There are many publicly known encryption algorithms, which can be used to store
sensitive data on a hard drive. However, getting hold of software implementations of
the algorithm can often be a problem. Many COTS1 pieces of software claim to have
implemented the different algorithms, however they are often expensive, and since it
mostly is not open source software, one cannot be sure of what is really implemented.
This kind of software mostly stores the keys used for encryption on the same medium
as the stored secrets encrypted with the key, so if the key can be found on the same
medium, applying the key on the encrypted secret would decrypt the secret with hardly
any problems. Such applications provide latency, not security.

Publicly known algorithms are available to everyone. One cannot be sure that algo-
rithms used are not broken by any groups or potential adversaries. The only thing one
can be sure of, or reasonable to assume, is that an adversary is at least at the same level
of breaking a cipher as the academic literature written about it. Therefore, maybe a cus-

1Commercial-off-the-shelf
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tom cipher, which is not publicly known, if well designed and tested can be appropriate
for storing a single user’s sensitve data on a hard drive.

1.3 Justification, Motivation and Benefits

Storing secrets and keeping them secret are essential in our information society. Secrets
play an important role in the world of information security and information management
in general. Keeping things secret is a must in many different contexts. If for example a
secret such as a private key is given away or revealed to others, the private-public key
pair would be useless in the future. If the private key is lost somehow or damaged, it
would be impossible to repair or generate a new one corresponding to a already existing
public key. How to store and where to store the private key is important for the PKI
technology to function the way it is intended. Most secrets today are stored on a hard
drive using a software system to protect them. The quality of such a protection must be
tested very seriously.

Not knowing the capabilities of adversaries, if a public cipher is broken in secret, or if
it is possible to calculate the minimum strength of a known cipher is among factors that
justify and motivate for this thesis.

Many stream cipher designs in use are either secret or proprietary designs [1]. To
design a custom cipher specially adopted to software implementation would lead to a
greater variety of choices when selecting a stream cipher for encrypting sensitive and
confidential data.

1.4 Research Questions

Research questions to be answered arise from the process of developing the custom ci-
pher. The cipher needs to be fast executed in software, and it needs to be secure. Four
essential research question are identified as key questions to be answered throughout
this thesis:

• What are advantages or disadvantages of using a custom cipher compared to publicly
known ciphers?

• How well can efficiency/security trade off be achieved in cryptographic algorithms
for PC protection?

• How secure is the new stream cipher?

• How efficient is the new generator?

1.5 Method

To get an overview over existing cryptographic algorithms, a literature study was used as
the method to achieve it. Literature study was also the main used method for learning
how different stream ciphers are designed. To get an wide understanding of popular
techniques and components used as building blocks for stream ciphers, was very time
demanding. In addition to a thorough literature study, dialogs with the supervisor have
helped me to learn how to build a customly designed stream cipher.

For the statistical testing, empirical testing on different bit sequences produced by the
stream cipher generator were conducted. Hypothesis testing methodology were applied
for the testing, the statement H0 was that the bit sequences produced is random, and the

2
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alternate hypothesis H1 was that the sequences is not random.

1.6 Outline of Chapters

Chapter 2 provides a overview of existing techniques and methods used to protect sensi-
tive data on a PC/in software. Further, chapter 2 gives a short introduction to cryptog-
raphy, and a presentation of some existing encryption algorithms and known attacks on
the specific ciphers.

In chapter 3, the new custom designed stream cipher is presented, as well as a theo-
retical cryptanalysis of the cipher.

In chapter 4, a thorough statistical testing is applied to the new cipher, and the results
are discussed. Chapter 4 also provides efficiency comparisons between the new custom
designed cipher and some widely used ciphers.

Chapter 5 discuss some of the research questions presented in Section 1.4. In chapter
6 we summarize the conclusions of the study, and in chapter 7, further work and new
questions which have arisen throughout working with the thesis is presented.

3
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2 Review of Existing Methods

2.1 Literature Survey

2.1.1 Existing Theories and Algorithms for Storing Secrets

Data can be stored on any medium which can store information over time. The medium
should be persistent, so losing power would not mean losing the data stored on it. When
talking about using software to store sensitive data, it most often means storing the soft-
ware used and the protected data on a hard drive. One method used to store secrets or
sensitive data on a hard drive is to encrypt them in some way so the sensitive information
would appear encrypted on it. One popular way of doing this is to base the encryption
on some kind of password. RFC 2898 [2] discusses methods and proposes a way of us-
ing passwords to generate keys for such encryption/decryption methods. [2] is the base
for many algorithms and methods for encrypting sensitive data such as a private key in
Public Key Infrastructure schemes [3], and for exchanging sensitive data [4].

Other methods of storing secrets on a hard drive could be to hide the secrets in some
way. A software tool called Partition Manager[5] uses a technique that makes a hidden
partition (or password protected if desired) so only those who know of it would find it.
In [6] Eric Cole discusses different aspects of hiding data and use of techniques such as
steganography.

Another method to store secrets could be to split the secrets into smaller pieces and
then "hide" them individually, making it a puzzle for an intruder. This method is mainly
a manual method in the meaning that the secret holder splits the secret by himself, then
deploys the secrets in different places on the hard drive or within the file system or
operating system. The security of this method relies on the fact that an adversary does
not really know what he is looking for when the secret is split into pieces. The separate
pieces might also be disguised as something quite different from what it really is. For
example, a fake system file or a fake program file.

Another approach is to set rights on the secret data, so only persons authenticated
in some way get to access them. This is used in operating systems such as Microsoft
Windows and Linux [7, 8] authentication and access control tables. Techniques for au-
thentication could be biometry, password or whichever attribute found good enough for
authenticating an individual.

If the sensitive data to be stored are something that one has memorized, such as a
password, and this password is used in some kind of authentication process, it is not
necessary to use an encryption/decryption algorithm. In such cases a hash algorithm or
a HMAC algorithm could be used. This kind of algorithms such as SHA1 [9] and MD5
[10] take some data as input, and generate an output of a given length. Sending the
secret into this algorithm would result in the same hash value each time. On the other
hand, it would be very difficult to find two different messages that produce the same hash
value. In [11] Viega, McGraw claims this to be a very good method of storing passwords
on hard drives.

The newest thing regarding storing of sensitive data are virtual storage Farms [12].

5
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This kind of technology provides "outsourcing" for sensitive data. The main principle is
to let others handle the data storage, and allow the rightful users to access the data over
The Internet at any time preferred. This way of handling data storage derives several
new aspects, such as network security, protocol security and IP security.

Many well known cryptographic algorithms and usage areas can be found in [13],
and detailed cryptographic theory can be found in [14]. Some of these algorithms will
be described more in detail in Section 2.2.

2.1.2 Existing Methods, Solutions and Products

Many applications need to store sensitive data locally on the hard drives to offer desired
functionality. For instance, Internet browsers like Microsoft Internet Explorer1, Opera2

and Mozilla3 need to store keys and certificates in a PKI structure to ensure encrypted
data flow between client and servers. Mozilla uses the guidelines described in [2] to
store such sensitive data [15] while Microsoft Internet Explorer is semi-integrated with
the Microsoft operating system, and uses parts of the OS to handle sensitive data. Pretty
Good Privacy (PGP) described by Garfinkel in [16] is another popular software, which
needs to store secret data. This software let users send encrypted and authenticated
messages over the Internet. OpenPGP [17] is a free standard of PGP, which does not
make use of the patented IDEA algorithm. In OpenPGP implementations, the secret part
of private keys are stored encrypted in a key-ring, where a pass-phrase and an optional
salt4 is used in a "‘string to key"’ algorithm to generate the key which the private key is
encrypted with.

In addition to all the applications that need to store secret data, there are several
others whose function is to help users store their sensitive and secret data. Applications
such as [18, 19, 20] all offer an of-the-shelf software to help the users manage their con-
fidential data. Most of this software uses a password protected or an encrypted database
or file for security. A password is also often all that is used to encrypt the data. The
security level achieved in these applications is questionable.

2.1.3 Security of Various Methods, Solutions and Products

Several documents are written, which look at the security and strength of different cryp-
tographic algorithms and protocols. Work such as in [21, 22, 23] are few examples.
However, it is not easy to perform a total security analysis of these algorithms [24]. Less
information is to be gathered about work done to measure strength and compare the
different ways or methods to store sensitive data.

Encryption seems to be the solution for many applications providing secure storing of
secrets. Encryption is also often the advise given by others regarding storing of secrets.
As en example; Guttman, L. Leong and G. Malkin [25] recommend that we encrypt all
private data wherever we store them.

It seems that in most cases of software encryption and products offering this kind of
service, the security of the encryption all comes down to the security of a password or
something similar. This because the encryption keys are often derived from passwords,
pass-phrases or something only the rightful owner should know.

1http://www.microsoft.com/windows/ie/default.mspx
2http://www.opera.com
3http://www.mozilla.org/
4Salt: Some arbitrary data combined with the pass-phrase to prevent dictionary attacks.
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2.1.4 Practically Achievable Security

In most cases is it possible to rate "confidentiality level" of sensitive data. In some cases,
stronger or better methods to protect the secret data are required than in other cases.
Having confidentiality and integrity in mind, it would be desirable to develop some tech-
niques to be able to make an estimate of how secure software protection can ever be.

To be able to give an answer to this question, one of the aspects needed to be investi-
gated is how secure the software protecting the sensitive data is. Methods to secure soft-
ware such as code obfuscation [26], software obfuscation, software diversity [27], white-
box cryptography [28], software tamper resistance [29] and security by obscurity [30]
are known techniques to protect software against attacks. Code obfuscation/software
obfuscation and code transformations are techniques to prevent reverse engineering at-
tacks [31]. Reverse engineering means generating source code from already compiled
machine code. White-box cryptography may be applied for protecting secret keys in un-
trusted host environments. Software tamper resistance is applied for protection against
program integrity threats, and software diversity is an approach for protection against
automated attack scripts and widespread malicious software.

To compare these techniques and to be able to say something about the security
strength in these methods, we must be able to measure and compare them in some way.
Little work have been done to develop analysis techniques and metrics for evaluating
and comparing the strength of various software protection techniques [32, 33].

Software does not run in a stable or constant environment. Many different operating
systems exist and are under constant evolution, and new operating systems are also
developing. The Palladium project [34] is a work toward a new Microsoft operating
system where security is the priority number one. Operating systems are also a factor to
be considered when giving an answer to this question.

2.1.5 Information, Attributes and Aspects, Which Are Relevant When Compar-

ing Methods and Solutions Used to Protect Sensitive Data

It is important to identify resistance against any form of attacks directed to the methods
described above. Attributes such as quality of software implementation, the easiness of
detecting which methods used to protect the secrets and attack statistics (for example the
results of penetration testing etc.) are parts of a complete picture to form the strength
regarding the security of the method protecting the secrets.

Very little work is done to identify attributes to help develop some method or iden-
tify metrics to compare and measure the security strength of different techniques and
protection methods [32].

2.2 Cryptographic Algorithms

2.2.1 Introduction

To be able to store or transfer secrets or confidential information have been a demand
for centuries. Methods needed to be developed to achieve this goal, and encryption
were early introduced as a solution to this problem. An example of such a solution or
encryption algorithm is the Ceasar cipher which Julius Ceasar (100-44 BC) used in his
"government" communications. However, modern encryption theory and algorithms has
its roots from two essential works; "La cryptographie militaire" by Auguste Kerckhoffs
[35] and "‘Communication theory of secrecy systems"’ by Claude Shannon [36] the latter
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being based upon his previous work in [37]. Kerchoffs is known for his "rules" regarding
the use of encryption, whereas Shannon is specially known for his communication model.

Encryption algorithms can be divided into two types of technology, symmetric and
asymmetric5. The main difference between these two types of encryption is that asym-
metric algorithms make use of key pairs where one key is private or secret (only known
to the key pair owner), and one key is publicly known. If for example some data are
encrypted with the public key, only the holder of the private key can decrypt the data. A
widely used asymmetric algorithm is the RSA algorithm [38], which takes advantage of
the high complexity of prime factorization in mathematics.

In symmetric encryption algorithms, the same key is used for encryption and decryp-
tion. Symmetric algorithms can then again be classified as a block cipher or a stream
cipher. The difference of ciphers in these classes is that stream ciphers operate on the
entire data to be encrypted "on the fly", while block ciphers divide the data which are to
be encrypted into blocks of a given size, then encrypt the data block by block.

Generally, symmetric encryption algorithms are much faster than asymmetric algo-
rithms. So when it comes to encryping larger amount of data, symmetric algorithms are
to be used for efficiency. Many different protocols and services uses public key cryptogra-
phy for authentication, signatures and encryption of a symmetric key which then might
be used later in a protocol for efficiency and safety.

Computational complexity is a widely used concept in cryptography. As a basic princi-
ple, we can say that the computational complexity for specific cryptographic algorithms
is two to the power of the keylength k used by the algorithm. 2k. This means that also
the computational complexity for breaking a cryptographic cipher is also 2k. However,
this is the ideal case. If some method applied on the cipher reduces the effort needed to
break the cipher, the computational complexity of braking the cipher is reduced.

2.2.2 Block Ciphers

Block ciphers are the most common and widely used ciphers. Many block ciphers are
publicly known ciphers, and they have been studied for decades. The basic structure of
most block ciphers is to divide the information which is to be encrypted or decrypted
into blocks of a given size, then iterate through an algorithm n times, before one block
of ciphertext/plaintext is generated.

2.2.2.1 Designs Principles

Feistel design [39], is a common design principle in many block ciphers. A basic Feistel
cipher takes 2l plaintext bits, and is a permutation, F, which usesm round permutations,
Fi, so that,

F = F0 ◦ F1 ◦ ... ◦ Fm−1

where ◦ denotes composition of functions.
Round i acts on half the input bits, the r bits, R, by means of the keyed function, fi,

and XORs the result with the other half of the bits, the l bits, L. It then swaps the left and
right halves. Thus we have,

[L ′, R ′] = Fi[L, R] = [R, L⊕ fi(R)

where [L ′, R ′] becomes the new input [L, R] to round i + 1. Although F and Fi must be

5Asymmetric cryptography is often referred to as public key cryptography
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permutations, the fi need not be. After two rounds in the Feistel twister, all plaintext bits
have been acted on in a non-linear way.

The Feistel structure allows decryption to be accomplished using the same process
as described above, using the sub-keys in reverse order. Ciphers like DES, MISTY1 and
Camellia are all based on the Feistel structure.

Another design principle is the Substitution-permutation network (SPN). An SPN net-
work separates the role of confusion (substitution) and diffusion (permutation) in the
cipher. As with most block ciphers, the cipher is decomposed into iterative rounds where
each round comprises a layer of S-boxes (substitution boxes), followed by a permutation
or diffusion layer. The S-box layer provides the non-linearity or the confusion, and the
permutation layer provides the rapid diffusion. To separate the tasks of confusion and
diffusion allows the designer to maximise non-linearity of the S-box(es), and maximise
information spread for the diffusion layer. Among ciphers which use the SPN design
principles we find ciphers like Rijndael, Khazad, Hierocrypt, SAFER++ and IDEA.

2.2.3 Popular Block Cipher Designs

Beneath follows a short presentation of some popular and widely used block ciphers.
Two of the ciphers, SAFER++, and SHACAL, are presentated not because they are widely
used, but because they both have a special design.

2.2.3.1 Triple-DES

One variant of triple-DES6 which is much in use is called two-key Triple-DES. Like all
variants of DES, it occurs as a natural extension of the old standard DES algorithm [40].
Two-key Triple-DES operates on 64 bit plaintext blocks, and takes a 2 × 56 = 112 bit
key as input. The security in Two-key Triple DES is enhanced in particular by repeating
the cipher three times and the key twice. The three runs of the encryption algorithm
are encrypt, decrypt, then encrypt again. This order is chosen to make the cipher easily
backwards compatible with single DES. However, the form encrypt, encrypt, encrypt is
also backwards compatible by using the all zero key in the first two encryptions, then a
single-DES key on the last encryption.

A double-DES variant of the DES algorithm is not an option due to the meet-in-the-
middle attack which renders double-DES with no greater security than single DES [41],
[42].

A much better variant of DES is the three-key Triple DES variant. This version of
Triple DES operates on 64 bit plaintext blocks, and uses a 168 bit key for encryption.
This version of the cipher is also widespread in use, and is considered to be a lot more
secure than two-key Triple DES.

Another version of the DES algorithm is the DESX [43] (see also Section 2.2.6). This
version of DES also takes three keys as input, but requires only one single DES encryption
preceded with XOR with another key, and completed by XOR with a third key. Because
DESX only requires to run through the DES encryption procedure once, the efficiency of
DESX is much higher than Triple DES variants.

DES is a Feistel cipher, and the key is input linearly via the XOR function, and there
are 8 6-bit in, 4-bit out S-boxes applied in parallel to the 48-bit input to give 32 bit
output. The DES standard recommends to run 16 rounds of the algorithm to be secure.

Three-key Triple DES is a concatenation of three instances of DES, where a different

6Data Encryption Standard
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key is input for each instance of DES, to give a total key input length of 3×56 = 168 bits.
The security of Triple DES is a lot weaker than what 128 bits ciphers should be, and

the two-key Triple DES is generally considered weaker than three-key Triple DES [1].
The efficiency performance in software or on a standard workstation PC is rather bad
[1]. In [44], Merkle and Hellmann showed that two-key triple encryption can be broken
using 256 chosen plaintexts, and 2112 single encryptions. The standard way to attack
Triple DES is to use the meet in the middle attack [13]. This kind of attack requires three
plaintext/ciphertext pairs, and 2112 encryptions. An advanced meet in the middle attack

against two-key Triple DES is proposed in [42].
Since Triple DES uses more or less the DES encryption/decryption scheme, all attacks

on DES are relevant to Triple DES. In fact, the most successful attacks on reduced round
of Triple DES, are the attacks on standard DES. It has been shown that differential crypt-
analysis can cover as many as 18 rounds of DES, and it is suspected that this may also be
for linear cryptanalysis.

Two of the best known attacks on three-key Triple DES are a related-key attack [45]
by Kelsey et al., and a meet in the middle attack [46] by Lucks. The meet in the middle
attack can break three-key triple DES with about 1.3 × 2104 single encryption steps, and
232 known plaintext/ciphertext pairs.

2.2.3.2 IDEA

IDEA [47] operates on 64 bit blocks of plaintext and ciphertext and is controlled by a
128 bit key. To achieve an acceptable security margin, the designers operate it with a
requirement of 8.5 encryption rounds. The designers claim to achieve high security by
concatenated use of three arithmetic operations from two dissimilar algebraic groups;
Addition mod 216, Multiplication mod 216 + 1, and bitwise exclusive OR. The combined
use of these three operations is used to achieve high non-linearity and to completely
replace the more conventional use of S-boxes. The use of these three operations can often
result in efficient implementations in software because many processors have special-
purpose multiplication operators.

The key schedule of IDEA takes a 128 bit key and turns it into 52 16 bit key sub blocks
which are then used throughout the 8.5 encryption rounds.

IDEA has been studied for over a decade and few security flaws have been found.
There is no known attack against 5 or more rounds of IDEA. One of the best known
attacks on IDEA is found in [48] where an attack on 4.5 out of 8.5 rounds of IDEA is
presented. However, it has been found that IDEA has a large collection of weak-key
classes. In [49] Biryukov et al. present weak-key classes that contain 253 − 264 weak
keys.

2.2.3.3 AES, Rijndael

Rijndael [50] has recently been selected as the Advanced Encryption Standard AES and
has therefore been subject to intensive study in the last few years. Rijndael is a non-
Feistel cipher and is a variant of the Square block cipher [51], which employs a combi-
nation of optimal diffusion and optimal non-linearity of the S-box. The key is linearly
added into the cipher via XOR, and can be either 128, 192, 256 bits long over 10, 12, or
14 rounds, respectively. A round in Rijndael can be written as follows:
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ByteSub is the optimally non-linear 8 × 8 bit S-box operation, which is x−1 over
GF7(28), followed by an affine transformation. ShiftRow is a bytewise permutation over
GF(28)4, MixColumn is a bytewise affine transform over GF(2)32, and AddRoundKey
is the XOR of the key onto the output of the round. The diffusion layer is a linear
transformation and comprises ShiftRow and MixColumn.

The key schedule of 128 bit Rijndael over 10 rounds takes in a 128 bit key and gen-
erates 128 × 11 = 1408 round key bits in the form of 11 128 bit subkeys for each round,
and one for the beginning.

Some of the most successful attacks against Rijndael are the Square attack [50] [52]
and the Collision attack by Gilbert and Minier [53]. However no attack is known on
more than 7-8 rounds of Rijndael being more efficient than exhaustive keysearch. A
bigger version of Rijndael also exists which works over a blocksize of 256 bits.

2.2.3.4 SAFER++

The SAFER++ cipher [54] exists in two variants, one which operates on 64 bit plaintext
blocks, and one which operates on 128 bit plaintext blocks. Both variants are based
on the previous SAFER and SAFER+ ciphers. The 128 bit plaintext version is adapted
for use in the authentication scheme in the wireless communication protocol Bluetooth.
Recent results show that using algebraic optimizations, the most common Bluetooth PIN
can be cracked within less than 0.06-0.3 seconds by exploiting properties in the SAFER
implementation [55].

The version which operates on 64 bit blocks takes a 128 bit key as input and gener-
ates 64 bit ciphertext blocks. The designers recommend to use 8 encryption rounds to
achieve sufficient security for this version of the cipher. SAFER++ uses a 4-point Pseudo-

Hadamard Transformation to achieve fast, rapid diffusion at low complexity. One 16 byte
subkey is used with each round, along with one post-cipher output transformation which
is a final 8 byte addition. The cipher uses two incompatible group additions to achieve
key addition, namely bitwise XOR (uses the 1, 4, 5, 8 subkey bytes) and bytewise addi-
tion modulo 256 (uses the 2, 3, 6, 7 subkey bytes). The S-boxes used in the cipher are
exponential and logarithmic functions modulo 257.

The key schedule for the 64 blocks SAFER++ uses 9 16 byte bias words in order to
randomize the produced subkeys so as to help avoid weak keys. These bias words, Bj,
are determined by,

Bi,j = 4545(17i+j) mod257

mod 257

where Bi,j is the i-th byte of Bj.
It is worth noticing that the spreading of 64 bits to 128 bits, and the subsequent drop-

ping of 128 bits down to 64 bits is an unusual feature of SAFER++ which distinguishes
it from many other block ciphers.

7Galois Field [14]
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No security flaws have been found with SAFER++ (64 bit version) [54]. The de-
signers conclude that SAFER++ with six rounds or more is secure against differential
cryptanalysis, and with two and a half round or more is secure against linear crypt-
analysis. However, one of the best attacks known on SAFER++ [56] shows that three
and a half rounds of SAFER++ (64 bit version) can be attacked requiring 233 known
plaintexts.

2.2.3.5 SHACAL Family

SHACAL [57] is a 160 bit block cipher using a 512 bit key based on the FIPS8 hash
function standard. There are three variants of the SHACAL family of ciphers, all based
on different versions of the Sha hash algorithms. SHACAL-1, which is based on the SHA-1
hash algorithm [9], is presented beneath.

SHACAL-1 places the 160 bit plaintext in 5 concatenated 32 bit variables,A,B,C,D, E,
and updates these five variables on each of 80 consecutive steps, so that the final cipher-
text is contained in the variables after 80 steps. In this process, the 512 bit key is ex-
panded to 2560 bits. In each round of the algorithm the main elements used are addition
modulo 232, AND, OR, and data rotation. Since the encryption algorithm is based on the
hash function SHA-1, it is considered to have very fast implementations.

The key schedule for SHACAL-1 is linear, and it expands the 512 bit master key to
2560 bits. The master key is a concatenation of 16 32 bit words, and if the master key is
shorter than 512 bit, padding is used to generate the 512 bit master key.

No security flaws have been found in SHACAL-1. However, recently (February 2005)
Xiaoyun Wang et al [58] found collisions for the SHA-1 algorithm in 269 calculations,
about 2,000 times faster than brute force (280). This finding might also have conse-
quences for the SHACAL-1 encryption scheme, since the structure of SHACAL-1 is very
similar to the SHA-1 hash algorithm. One of the best known attacks on SHACAL-1 is the
Rectangle attack described in [59]. This attack works for 49 steps of the compression
function with a data complexity of 2151.9 chosen plaintexts and a time complexity of
2508.5.

2.2.4 Stream ciphers

A stream cipher is an algorithm for encrypting a sequence of elements or characters from
a plaintext alphabet, usually the binary alphabet which consists of only zeroes and ones.
Stream ciphers are commonly classified as being synchronous or self-synchronising. In
a synchronous stream cipher the keystream is generated independently of the plaintext
and ciphertext, so the keystream depends only on the key. In contrast, the keystream of a
self-synchronising stream cipher depends on the key and a fixed amount of the previously
generated ciphertext. Most stream ciphers can be classified as additive stream ciphers.
An additive stream cipher is a synchronous cipher in which the ciphertext is the XOR
of the plaintext and the keystream. In specific applications, stream ciphers are more
appropriate than block ciphers:

• Stream ciphers are generally faster than block ciphers.

• Stream ciphers have less hardware complexity.

• Stream ciphers process the plaintext character by character, so no buffering is re-
quired to accumulate a full plaintext block (unlike block ciphers).

8Federal Information Processing Standard
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Figure 1: Non-linear Combination Generator.

• Synchronous stream ciphers have no error propagation.

Basically there is a belief that stream ciphers offer advantages over block ciphers in
situations when low power consumption is required, low hardware copmplexity is re-
quired or when extreme software efficiency is needed [60]. Most stream ciphers are
based on simple devices that are easy to implement and run efficiently. A common exam-
ple of such a device is the linear feedback shift register (LFSR) [61]. Such simple devices
produce predictable output given some previous output. Thus, the output of such devices
is typically used as the input to a function that produces the keystream (an LFSR cannot
be directly used as a keystream generator since it is totally linear). Keystreams can also
be produced by using certain modes of operation of a block cipher.

There is no dedicated standard for stream ciphers such as the AES standard for block
ciphers (see section 2.2.2). One probable reason is that most stream ciphers in use are
either secret or proprietary designs [1].

2.2.4.1 Designs Priciples

Stream Ciphers Based on Feedback Shift Registers

Linear feedback shift registers are widely used as building blocks for stream ciphers. If
designed properly, LFSRs have large periods and good statistical properties, and there
exist mathematical techniques to analyse them. Since the output from a LFSR is linear,
the output is easily predictable. So when using LFSRs as elements in a stream cipher,
it is very important that the output sequence from the cipher does not inherit linearity
properties from the output produced by the linear LFSRs. Beneath follow descriptions of
three common techniques used to achieve non-linearity in stream ciphers built up with
one or several LFSRs.

Non-linear Combination Generators: A non-linear combination generator uses several
LFSRs. The output of these LFSRs are taken as input to a non-linear function f,
which then produces a non-linear keystream.

Figure 1 illustrates this principle.

Non-linear Filter Generators: Non-linear filter generators use the stages of a single
LFSR as input to a non-linear function f, which then produces the final keystream.
A non-linear filter can also be applied at the end of any cipher to give the output
keystream even higher non-linearity. Figure 2 illustrates a basic non-linear filter
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Figure 2: Non-linear Filter Generator.

generator.

Irregularly Clocked Stream Ciphers: Most irregularly clocked stream ciphers include a
combiner from which the output is decimated in some way. A combiner consists
of a linear part (often one or several LFSRs) and a Boolean function (typically a
nonlinear Boolean function). To create the keystream, some positions are taken
from the internal state of the linear part and fed into the Boolean function. It is
basicly the Boolean function which determines which produced keystream bits are
used, and which bits are discarded. The output of the Boolean function is then com-
bined with the message by a ciphering transformation, typically the XOR operation.
An irregularly clocked stream cipher is often designed with one or several LFSRs
which control the keystream data generator. The keystream data generator is often
another LFSR which is irregularly clocked based on the clocking LFSRs and some
Boolean function. The output from the data LFSR will then be non-linear because
of the irregular clocking. Figure 3 shows a basic irregularly clocked generator.

Stream Ciphers Based on Block Ciphers

Block ciphers can be run in some modes of operation, which make the ciphers produce a
keystrem sequence. The most common modes are the Output Feedback mode (OFB), the
Cipher Feedback mode (CFB) and the Counter mode (CTR). Since stream cipers based
on block ciphers have the underlying structure of a block cipher, these can potentially be
attacked by cryptanalysis of the underlying block cipher. For block ciphers in either OFB
or CTR mode there exist generic distinguishing attacks. Given a block cipher with the
blocksize b, 2b/2 blocks of keystream are sufficient to distinguish the keystream from a
truly random sequence. This is achieved by looking for repeated occurrences of blocks,
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Figure 3: Irregular Clocking.

which are not possible when the keystream is generated by a block cipher in CFB mode,
unless the sequence starts repeating itself.

Modular Arithmetic Generators

This class of generators is based on the presumed intractability of an underlying number
theoretic problem. The RSA generator and the Blum-Blum-Shub generator [62] are ex-
amples of such generators. Since this class of generators is based on modular arithmetic,
which is very resource-demanding, this kind of generators is extremely slow compared
to other generators. Thus this kind of generators is primarily used as pseudorandom
number oracles, not as building blocks for encryption algorithms.

2.2.4.2 Attacks Against Stream Ciphers

When considering attacks on stream ciphers, known plaintext attack is the most common.
In other words we assume that a large amount of the keystream is known for a potential
adversary. The statistical deviations from the keystreams are then exlploited in one of
three ways as an attack on the stream cipher; Distinguishing Attacks, Prediction and Key
Recovery attacks.

Distinguishing Attack A distinguishing attack is simply a method for distinguishing out-
put from the keystream generator (the cipher) from a random bit-sequence of the
same length. If we are able to do that, we can for instance find out which generator
is used, and a given non-random pattern in the keystream generator is proven.

Prediction Attack Prediction Attacks find a method to predict some output from the
keystream generator in a more accurate way then by guessing. To be able to predict
some output from the cipher, will lead to less complexity of recovering the original
plaintext.

Key Recovery Attack If someone has successfully mounted a key recovery attack, that
someone has also enabled both a Distinguishing attack and a prediction attack. A
key Recovery attack is the far most effective attack if succeeded. If the key used to
generate the keystream is recovered, all the future and past ciphertexts generated
with this key can easily be found. Thus frequent rekeying or key reinitialization is
needed in most common designs and uses of stream ciphers.
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Above, we have classified different types of attacks. We will now give a brief overview of
the most used attack techniques against stream ciphers that we know today.

Exhaustive key search Being the most genearal attack, this attack technique can be ap-
plied to any stream cipher. The idea behind this attack is, given a keystream gen-
erated by an unknown key, an attacker simply tries all possible keys and compares
the newly generated keystreams against the existing one. If he gets a match, he
has recovered the originally used key. Exhaustive key search can be applied against
all symmetric encryption algorithms, and is often reffered to as brute force attack.
For stream ciphers there exist very efficient techniques to conduct an exhaustive
key search attack, namely the time-memory tradeoff techniques [63]. The time
complexity for exhaustive key search is split into a time and a memory complexity,
and the name "time-memory tradeoff" results from this idea.

Periodic and Statistical Attacks If the period of a keystream generator is smaller than
the amount of data which is to be encrypted (the keystream starts to repeat itself
before the encryption process is finished), a prediction attack would be easy to
mount. Thus, large period is essential in any keystream generator.

Exploiting Linear Complexity The linear complexity is the length of the shortest LFSR
that can produce a certain sequence. If the linear complexity is too small, then an
attacker can reproduce the sequence of an LFSR. The main approach to achieve
this, is to make use of the Berlekamp and Massey algorithm described in [64].

Correlation Attacks Correlation attacks are the most general attack on LFSR based
stream ciphers, and this kind of attacks are important to be aware of. In a corre-
lation attack, the output from a keystream generator is correlated in some manner
with the output from a much simpler device, such as a simple component LFSR
of the complete keystream generator. This correlation can be used in prediction
attack, and even sometimes be exploited to determine the key used for the specific
keystream analysed. The first ideas of conducting a correlation attack were de-
scribed by Thomas Siegenthaler in [65]. Later other authors have improved these
ideas by developing Fast Correlation Attacks [66]. In a fast correlation attack one
first tries to find a low weight parity check polynomial of the LFSR, then some
iterative decoding procedures are applied.

Higher Order Correlation Attacks As many stream ciphers are built up with some lin-
ear sequence generator (often LFSRs) and some non-linear output function f to
generate the keystream, correlation attacks try to find a linear approximation of
the function f. A higher order correlation attack [67] tries to calculate an equiva-
lent higher order approximation of the function f.

Divide and Conquer Attacks In Divide and Conquer Attacks a portion of the key, or
sometimes the internal state of the cipher is guessed. Now the remaining bits of
the the key might be found with less time complexity than with exhaustive key
search.

Rekeying Attacks In many applications which make use of stream ciphers in some way,
the cipher is frequently rekeyed. If someone manages to exploit this rekeying
schedule to find the key, a Rekeying attack has been successfully mounted.
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Side channel Attacks If for example running different primitives or different inner states
in a cipher causes a higher power consumption of the cipher, this can be used to
attack the cipher. If the cipher causes external elements not connected directly to
the cipher to behave in some special or predictable way, this can be exploited in a
side channel attack.

2.2.5 Some Publicly Known Stream Ciphers

2.2.5.1 SNOW

SNOW [68] is a synchronous stream cipher. It uses a 128-bit or a 256-bit key, and has an
internal memory of 576 bits. SNOW consists of an LFSR of length 16, and a Finite State
Machine. The state bits of the generator are words in GF(232). The LFSR used in SNOW
is defined by the recurrence relation

st+16 = α(st ⊕ st+3 ⊕ st+9)

where α ∈ GF(232),⊕ is addition in GF(232), and + is addition modulo 232, and st is the
generated state output from the recurrence.

The Finite State Machine consists of two registers whose values at time t will be
denoted by at, bt as follows:

at+1 = at ⊕ R(∫
t+bt)

bt+1 = S(at)

ft = (st+15 + at) ⊕ bt

zt = ft ⊕ st

where R denotes a 7-bit left rotation, and S is a 32-bit to 32-bit S-box. The sequence zt
is then used as the keystream.

There exist two attacks on SNOW in particular, one distinguishing attack [69], and
one guess and determine attack [70]. The distinguishing attack on SNOW requires 295

observed bits of keystream, and a workload about 2100. The guess and determine attack
however, with the first approach needed 264 observed bits of keystream and a workload
2256, which is no better than exhaustive key search. With some assumptions and modifi-
cations, the second approach to attack the cipher required 2224 observed keystream bits,
and a workload 295.

Due to this attacks on SNOW, the authors released a new version of the cipher in 2002
called SNOW 2.0 [71], as an improvement to the original design.

2.2.5.2 SOBER-t16/t32

The SOBER family of stream ciphers [72] are synchronous ciphers. The SOBER-t16 uses
a 128 bit key for encryption, while the SOBER-t32 uses a 256 bit key for encryption. The
SOBER-t16 has an internal memory of 272 bits, while the SOBER-t32 has an internal
memory of 544 bits. Both versions of the cipher use an LFSR of length 17, the t16
version uses the LFSR over the Galois field GF(216), the t32 version over the Galois field
GF(232).

For SOBER-t16, the elements of the Galois Field are represented by 16-bit binary
vectors corresponding to polynomials modulo the irreducible polynomial

x16 + x14 + x7 + x6 + x4 + x2 + x + 1.

17



Protecting Sensitive Data on a PC by a Custom Algorithm

For SOBER-t32, the elements of the Galois Field are represented by 32-bit binary
vectors. The irreducible polynomial for SOBER-t32 is

x32 + (x24 + x16 + x8 + 1)(x6 + x5 + x2 + 1).

If we denote ⊕ as addition in GF(216), and + as addition modulo 216, the recurrence
relation from the LFSR in SOBER-t16 can be written as

st+17 = αst+15 ⊕ st+4 ⊕ βst

where α = 0xE382 and β = 0x67C3.
If we denote ⊕ as addition in GF(232), and + as addition modulo 232, the recurrence

relation from the LFSR in SOBER-t32 can be written as

st+17 = st+15 ⊕ st+4 ⊕ αst

where α = 0xC2DB2AA3.
Both the SOBER-t16 and SOBER-t32 cipher uses a non-linear filter (see Section 2.2.4.1)

and a stuttering procedure together with the LFSR to produce the keystream.
In [73] a distinguishing attack on both a simplified version without stuttering, and

one on the complete cipher SOBER-t16 is described. The attack on the simplified version
(without stuttering) needs 292 keystream words to distinguish between keystream from
the generator and a complete random sequence with a probability of error 2−32. This
means that the computational complexity of this attack is 292. The attack on the complete
cipher scheme requires 2111 keystream words to distinguish the keystream from a com-
plete random sequence with probability of error 2−32. The computational complexity of
this attack is 2111.

[73] also describes a distinguishing attack on a version of SOBER-t32 without the
stuttering. This attack needs in the worst case scenario 286.5 keystream words to distin-
guish the keystream from a totally random sequence with the probability of error 2−32.
This leads to a computational complexity of 286.5 for this attack. In [74] Preneel et al.

enhanced the attack described in [73] and applied it on the complete SOBER-t32 cipher.
The computational complexity for this distinguishing attack was 2153.

Beside the attacks mentioned above, both SOBER-t16 and SOBER-t32 are vulnerable
to timing attacks and power attack due to their irregular decimation9 [72]. Guess-and-
determine attacks has also been applied on the unstuttered version of SOBER-t32, the
best of this attack had a computational complexity of 2244.

2.2.5.3 RC4

RC4 was developed in 1987, and is the most widely used stream cipher in software appli-
cations. It is used to protect Internet traffic in the SSL (Secure Sockets Layer) protocol,
it is integrated into Microsoft Windows, Lotus Notes, Apple AOCE, Oracle Secure SQL,
and many other software applications. It was also chosen to be part of the Cellular Dig-
ital Packet Data specification. RC4 implementations in software are extremely compact
and efficient, and its design was kept a trade secret until 1994, when it was reverse
engineered and anonymously posted to the Cypherpunks mailing list10.

RC4 has a secret internal state which is a permutation S of all the N = 2n possible
n-bit values, where n is typically chosen as 8. The initial state is derived from a key,

9Irregular Clocking
10���� � ������ ��	��
���
� � ���������, last visited 4/6 05
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typically in the range of 40 to 256 bits long, by a Key-Scheduling Algorithm (KSA).
A pseudo-random generator algorithm (PRGA) then alternately modifies the state by
exchanging two out of the N values and produces an output by picking one of the N
values in S. For a standard n = 8, this gives RC4 a huge state of about 1700 bits. A more
detailed description of RC4 is to be found in [75].

Since RC4 is widely used, a lot of cryptanalysis and attacks have been applied on
the cipher during the last two decades. Analysis of the PRGA in RC4 has proven no
great security weaknesses in the algorithm. For n = 8 and sufficiently long keys, the
best known attack has a time complexity larger than 2700 time to find its initial state.
However, many interesting properties of RC4 were found over the years. In [76] a major
bias in the distribution of RC4’s second output word were found. The word is zero
with twice the expected probability of 1/N, and thus RC4 outputs can be distinguished
from random strings by analyzing only about 28 words of output produced by unrelated
and unknown keys. The Key-Scheduling Algorithm in RC4 is proven to have severe
weaknesses [77].

Although RC4 is a widely used, and good algorithm, care must be taken when ap-
plying it in practice. As an example, RC4 is completely insecure in a natural mode
of operation which is used in the widely developed Wired Equivalent Privacy protocol
(WEP, which is part of the 802.11b Wi-Fi standard) [78]. The RC4 based WEP and WEP2
protocols are considered to be broken. In a busy network, an entire 128 bit WEP key can
be derived by passively observing it for a few hours.

2.2.5.4 LILI-128

LILI-128 [79] is a cipher developed from the LILI family of ciphers [80]. LILI-128 is a
synchronous cipher and it uses a 128-bit key and an internal memory of 128 bits. LILI-
128 can be viewed as a clock-controlled nonlinear filter generator. The cipher consists
of two components, one used for clock control and one used for data generation. Each
of the two components consists of an LFSR (LFSRc in the clock control component, and
LFSRd in the data generation part), and a function f (fcandfd) which taps the LFSRs.

During the key schedule of LILI-128, the 128 key bits are loaded directly into the
LFSRs. The first 39 bits are loaded into LFSRc, and the last 89 bits are loaded into
LFSRd. Neither LFSRc nor LFSRd may be zero.

LFSRc in the clock control component is regularly clocked and has the length of 39.
The feedback polynomial of this LFSR is

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1

. This polynomial produces a maximum length sequence. Each time the LFSRc is clocked
once, the function fc takes the contents of stages 12 and 20 as input, and produces an
output integer by

c = fc(x12, x20) = 2x12 + x20 + 1.

LFSRd of length 89 in the data generation component also produces a maximum
length sequence. Its feedback polynomial is

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1.

After the clock control component has produced the integer c, LFSRd is clocked c
times. The nonlinear function fd is defined by a truth table and takes the content of 10
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stages of the LFSRd as input and calculates an output bit z. This output bit is then used
as a new keystream bit.

Many time-memory tradeoff attacks have proved that the 128-bit key for LILI-128 can
be recovered faster than with exhaustive key search [81] [82]. A fast correlation attack

[83] has proved that the key can be recovered with a computational complexity around
271. This attack assumes a received bit sequence of length around 230 bits and a precom-
putation phase of complexity 279 table lookups. Due to this successful attacks, LILI-128
was not selected for further study in the NESSIE project [1].

A new version of LILI-128, LILI-II [84], was later introduced due to the security find-
ings in LILI-128. One of the most successful attack on this cipher is presentated in [60].

2.2.6 Encrypted File Systems

Another way to use encryption for protecting sensitive data and confidentiality is to have
the file system handle the encryption. Different encrypted file systems such as those eval-
uated in [85] encrypts data on a lower level than the application or user level. Beneath
follows a overview of the encrypted file system found in newer Windows environments.

2.2.6.1 Windows NTFS/EFS Encryption

With the release of Windows 2000, Microsoft announced their Encrypting File System(EFS).
EFS security relies on Windows 2000 cryptography support, which Microsoft introduced
in NT 4.0. This support is referred to as the CryptoAPI. EFS cooperates with the NTFS
file system to provide encryption. By building encryption into the Operating System, Mi-
crosoft can make the encryption and decryption process transparent to both applications
and users, which provides easy usability for the encryption tool.

Briefly, the encryption process is as follows: A 128 bit random number is generated
and used as the File Encryption Key (FEK) to encrypt a file or an entire catalog structure.
56 bit of the FEK is used as input to a symmetric encryption algorithm (in US versions
of Win2k the entire 128 bit FEK is used), DESX [43], which is an improved version of
the DES algorithm regarding Exhaustive Key Search attacks. FEK is then stored together
with the symmetric encrypted file(s), encrypted with a 1024 bit RSA public key assigned
to the user profile. The private key is stored on the computer’s hard drive by default
(later versions of Windows are claimed to have features to export the private key to an
external storage device, such as a smartcard). When stored on the hard drive, the private
key is stored in "Windows Protected Store", which is specific to the currently logged on
user. When a user is to access an encrypted file, the private key of the user is obtained,
and the OS automatically decrypts the files without involving the logged on user.

The security of this system is questionable. One can never both encrypt and compress
files, one attribute must be chosen, and encrypting system files is not possible or allowed,
which can be exploited in several ways as shown in [86]. Another problem with this
encryption process is that when a file is encrypted, a copy of the file is created which is
then encrypted, the original file is still on the hard drive in a non encrypted form. Using
disk editor tools like a DOS boot disk (or tools integrated in Windows NT) it can be easily
accessed and read.
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3 The Custom Software Cipher

3.1 Design

3.1.1 General Overview of the Design

The new custom cipher is built up with two primitives, each consisting of two different
linear feedback shift registers (LFSRs) and two Boolean functions. Together, the primi-
tives generate two 32 bit tuples, which are then combined in a combination algorithm,
and a 32 bit tuple is finally generated as the key stream for one iteration of the key
stream generator. Figure 4 shows the general design principles.

3.1.2 The Primitives

Both primitives in the design are based on two LFSRs and different lengths and feedback
polynomials. Each primitive is divided into two parts, a clock control part and a data
generation part. One of the LFSRs in each primitive works as a clock control register in
the clock control part of the primitive; the other LFSR is found in the data generation
part. The output from the clock control part at a given time Ct determines how many
times we should shift the LFSR in the data generation part before we produce a new
output Dt from the primitive. This principle is often referred to as irregular clocking
(See figure 3 in Section 2.2.4.1).

All the feedback polynomials used in the cipher are irreducible. This is to ensure
high periods in the LFSRs. The polynomials where calculated using a program specially
designed for generating such feedback polynomials. The election of the four polynomials
used in the cipher design was done based on their characteristics, to avoid bad feedback
polynomials as described in [87].

The LFSR R1 in the clock control part of primitve 1 is of length 107, and contains
32-bit tuples in each state. The feedback polynomial for this LFSR is

x107 + x92 + x62 + x27 + 1.

This gives the LFSR the maximum period 2107 − 1.

Figure 4: General Overview of the Cipher.
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Figure 5: General Overview of one primitive.

The LFSR R2 in the data generation part of primitve 1 is of length 127, and contains
32-bit tuples in each state. The feedback polynomial for this LFSR is

x127 + x62 + x59 + x15 + 1.

This gives the LFSR the maximum period 2127 − 1.
The LFSR R1 in the clock control part of primitve 2 is of length 103, and contains

32-bit tuples in each state. The feedback polynomial for this LFSR is

x103 + x66 + x43 + x34 + 1.

This gives the LFSR the maximum period 2103 − 1.
The LFSR R2 in the data generation part of primitve 2 is of length 149, and contains

32-bit tuples in each state. The feedback polynomial for this LFSR is

x149 + x114 + x64 + x29 + 1.

This gives the LFSR the maximum period 2149 − 1.
The functions f1 and f2 are in fact two balanced truth tables. These tables both

contain 216 elements. When accessing the truth table, the 16 most significant bits of the
32-bit output tupple is used as input for f1, and the 16 least significat bits as input to f2.
The results from these two functions is then accessed with the XOR operator. If the result
of the XOR operation is 1, the data generation LFSR is shifted one additional time before
the output is used further in the algorithm.

Figure 5 shows the general primitive design.

3.1.3 Key expansion and Generator Initialization Algorithm

The cipher takes a 256 bit secret key as input and combines this with a 64 bit message
key (which is publicly known) to initialize the state of the linear feedback shift registers.
The message key is different for each encryption. The main purpose of the message key
is to ensure that the same key never is used twice for a single encryption.

When the cipher is initialized, every bit of the secret key is bitwise XOR’ed with the
message key, to generate 64 32 bit integer tupples. The initialisation of the LFSR states is
done in the following way: First, the 256 bit secret key is converted into 8 32 bit integer
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tuples, and the secret key is converted into 2 32 bit tuples. For the first 32 bit secret
key tuple, the tuple is bitwise XOR’ed with the first message key tuple. The second 32
bit secret key tuple is rotated once to the right, then bitwise XOR’ed with the first 32 bit
message key. The third secret key tuple is rotated twice to the right, and so on. Then the
same procedure is used together with the second message key tuple. Then the LFSRs are
filled with these 64 32 bit tuples in a serialized way, meaning that when all the 32 bit
tupples are used once, the first tupple is then again used to fill the next LFSR position
which is to be initialized, and so on.

3.1.4 Re-keying Policies and Maintenance of the Cipher

The secret key should be changed once a month for safety reasons. Namely, there is a
possibility for the output sequence to be repeated. In order to reduce the probability of
this event, the secret key should be changed regulary (See for example [13]).

The message key is changed for each encryption.

3.2 Cipher Analysis and Results

3.2.1 Algebraic Analysis

An algebraic analysis over a cipher generator is usually done by creating a set of equa-
tions based on the secret input key and the output from the generator. The goal is to get
a set of equations, which is as nonlinear as possible. A non-linear equation in the form
x1, x2, ..., xl can be written mathematically as

n∑

i=1





l∏

j=1

x
c(i,j)

j



 = c

where c ∈ {0, 1} is a constant and c(i, j) ∈ {0, 1}.
In other words the equations retrieved should consist of many high order products to

document high non-linearity.
In principle, this process of generating nonlinear equations could be used to describe

each output bit as a non-linear combination of the generator’s seed. There are however
two major problems with this approach. First, a nonlinear equation produced can at
maximum be of the degree d = l, which in the worst case then can consist of 2l monomi-
als in one single equation. Working with nonlinear equations can only be done efficiently
when handling not too many monomials in each equation, thus it is an almost impossible
task to perform.

Secondly, solving systems of nonlinear equations is known to be NP-complete, which
is a part of the NP-hard problem [88].

Instead of generating the equations, which would be impossible in our scenario, we
try to document security by looking at the probability of high linear complexity in differ-
ent parts of the cipher generator design. The output from a single linear feedback shift
register is totally linear. When the period of the register is run through once (maximum
2l − 1 iterations, see [89]), the generator will cycle again and produce the same output.
The Hamming distance between two identical outputs from the register will always be
2l − 1 (if the register is of maximum period). Because a single LFSR has total linear
dependency on the output bits from its own state bits, high period LFSRs are not good
as keystream generator by themselves, but can work as very good building blocks for a
pseudo random keystream generator.
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If we look at Figure 5, we can see that the output bits from the functions F1, F2 depend
non-linearly on the state bits of the LFSR R1. This is because of the high non-linearity
of the functions. Both functions are balanced and take two separate 16 bit inputs from
the LFSR R1 to generate the output bits from both functions. Since the functions are
balanced, the probability that the function will return the value 0 is 0.5.

The output sequence of the LFSR R2 depends non-linearly on the LFSR R1 state bits.
This would even be the case if we did not have the functions F1 and F2. To introduce
the functions adds even one more source of non-linearity. Another interesting property
of the output from the LFSR R2 is that it does not depend linearly on its own state bits.
This is because of the non-uniform decimation, or the irregular clocking of the register.

3.2.2 Period and Linear Complexity

A pseudorandom generator or a complete stream cipher scheme is a finite state machine,
which can consist of at most 2l inner states. A direct consequence of this is that the
generator can give a maximum output of 2l bits before it cycles (starts repeating the
same sequence). This again might mean that the least significant output bits from the
generator can be used to produce a recurrence relation to model the most significant bits
of the output stream. If we can find a recurrence relation xi = R(xi−1, ..., xi−k), where
k is the length of R to describe the keystream, and we have at least k consecutive bits of
output from the generator, we can predict and generate the entire keystream easily. Two
particular recurrences are important to identify regarding the security of the cipher.

The period of the generator must be very long [61]. If we have an infinite bitstream
from the generator z = (z0, z1, ...), and we have two values ρ, θ ∈ N such that zi = zi+ρ

for all i ≥ θ the sequence is said to be ρ-periodic with a pre-period of θ. Since the
generator can have at most 2l inner states, it holds that θ+ρ ≤ 2l. Since for all i ≥ θ+ρ,
an attacker can use the recurrence zi = zi+ρ to predict additional bits of the keystream,
it is paramount that no more than θ + ρ bits of keystream are generated with the same
key.

In both primitives which build up our generator we have two LFSRs with high periods.
Because of the irregular clocking, the period from each primitive will be much higher
than the period of the LFSR R2.

PerP1 �
(

2lR2 − 1
)

The period of the entire generator will be higher than the highest period of the two
primitives. This is because of the combination function in the end of the scheme which
is a sum modulo 232 [61]. In some cases, the periodic part of the bitstream sequence z
can be described by a linear recurrence relation R such that k < ρ. The length k of the
shortest linear recurrence is denoted as linear complexity or linear equivalence LC(z). In
other words the linear complexity is the length of the smallest LFSR which generates the
bitstream sequence z. The linear complexity of a generator is then LC(z) ≤ ρ, since the
period ρ of the generator is also a linear recurrence.

Berlekamp and Massey have designed an effective algorithm [64], which constructs
the shortest linear recurrence describing z. This algorithm only needs 2 ∗ LC keystream
bits and takes O(LC2) computational steps to generate the linear recurrence. Thus, we
need high linear complexity when designing a keystream generator.

In our design, the linear complexity in both primitives will be very high. Since the
primitives are irregulary clocked and the output from R1 is sent into two highly non-
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linear functions, we can state that the linear complexity is LC � lR2. Again due to the
properties of the sum modulo 232, where in fact only the bit with weight 0 is linearly
dependent on the input bits of weight 0 because of the carry bit, we can claim that the
linear complexity of the entire generator is greater than the primitive with the highest
linear complexity.

LC > MAX(LCP1, LCP2)

3.2.3 Correlation Analysis

When a cipher is correlation immune, it means that changing a few bits in an earlier
state of the cipher should not make the cipher behave in any foreseen way and produce
predictable output.

The most interesting part of the cipher to analyze for correlation dependence is the
output function, sum modulo 232 (the combination algorithm in Figure 4). The sum
modulo 232 function has much of the properties as a latin square [90], and is known
to be a very correlation immune function. A latin square has the property that if all
possible numbers generated from the function are plotted into a matrix, each row and
each column in the matrix will only contain one instance of the same value. If the rows
and columns in the matrix are mixed, the structure of the latin square will remain intact,
i.e. each row and column will still be unique. Table 1 and Table 2 illustrate this property
for ⊕n, where n = 4.

⊕n 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table 1: Original Latin Square Matrix.

⊕n 0 1 2 3
0 2 0 3 1
1 1 3 2 0
2 0 2 1 3
3 3 1 0 2

Table 2: The Latin Square Matrix, Rows 1 and 3 are mixed, as well as Columns 2 and 3.

If we take the example further and convert the numbers to binary form, we can see
that n bits of input to the latin square result in one bit of output for two functions f1 and
f2. In other words, if we use the row and column numbers as a reference or index to an
element in the latin square, we need both the column number and the row number to
find the values for f1 and f2, i.e, there is no correlation between only the column number
and a value in the latin square, nor a correlation between a row number and a value in
the latin square. This property is illustrated in Table 3, where all possible combinations
of rows and columns are shown for n = 4.

As an example, we can read that the row-column value 1101 results in f1 = 0 and
f2 = 1 for this particular mix of columns and rows in the latin square. If only the row
index value, 11, were known, we would not be able to tell anything about f1 or f2. Only
knowing the column index value, 01, would neither tell anything about f1 or f2.
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Row Col f1 f2
00 00 1 0
00 01 0 0
00 10 1 1
00 11 0 1
01 00 0 1
01 01 1 1
01 10 1 0
01 11 0 0
10 00 0 0
10 01 1 0
10 10 0 1
10 11 1 1
11 00 1 1
11 01 0 1
11 10 0 0
11 11 1 0

Table 3: Values in the latin square (f1, f2) when row index and column index are used as identifiers.

As we can conclude from the example, the sum modulo 232 is a highly correlation
immune function, which will lead to high correlation immunity for the custom cipher,
and making it harder to perform correlation attacks on it.

3.2.4 Analysis of Keys

The message key should be unique for every encryption produced by this cipher design.
The message key has a length of 64 bits. The complexity of the key is 264, meaning that
we can have at most 264 different keys before repeating the same key. Since the message
key bits are used to initialize the generator, the key cannot be only zeroes. The message
key is publicly known, so we have the possibility to have an algorithm implemented in
the cipher which iterates through all the good values of the possible 264 keys. Another
possiblity might be to use a 64 bit cryptographic hash algorithm over the message which
is to be encrypted as the message key. This however enables the birthday paradox. Thus,
the same message key will be repeated after 264/2 in average.

Making only small changes in the key or keys which the stream cipher takes as input
to generate the keystream, should make the final output from the generator to be totally
different than from the output generated from the almost identical key. There should
not be any correlation between the keystream produced by the original key and the
keystream produced by the altered but almost identical key. The output should also be
balanced for both keys. This means that there should be almost identical numbers of
zeroes and ones in both outputs. The ratio between zeroes and ones should also be
balanced, meaning that the ratio should be about 0.5. To make a small indication of
how well the custom cipher has these properties, a small experiment was conducted. In
this experiment we produced 32000 bits of output from the generator using one specific
message key. Then we altered only the least significant bit in the message key, and
produced 32000 new bits of output. For the first message key we got 16065 zeroes and
15935 ones as output. The ratio between zeroes and ones is about 0.5 and is balanced,
which indicates a good result. For the second message key we got 16145 zeroes and
15855 ones as output. The ratio between zeroes and ones is also for this key about 0.5
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and is balanced, which indicates another good result. No correlation between the two
results can easily be found, and the output sequence appears completely different from
each other. Conclusion; the micro experiment conducted, indicates that the properties
tested for the cipher seem correct. A complete statistical test was applied to the cipher,
and the results are later presented in Chaper 4.

3.3 Implementation in C#

The implementation of the cipher simulation was made in C#. The language was chosen
because it is a new and popular language, and the efficiency for handling different vari-
able types and structures used to implement the LFSR and the logical functions seems to
be about the same for both Java, C and C# [91].

The implementation is made with the consern to be efficient in software. Guidelines
for fast implementation found in [92] were attempted to be followed.

The implementation in C# is just a simulation of the cipher. The cipher should be
coded in asambler for optimal efficiency.

Appendix A shows some outlines of the source code, to give an idea of how the
implementation was made.
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4 Statistical Testing

4.1 Introduction

A truly random bit sequence should have the same properties as something which always
has one out of two outcomes, and the probability is equally realistic for both outcomes,
like for example a coin toss. Here the probability of getting heads or tail is exactly
0.5, and if we toss the coin a thousand times, it should result in about five hundred
head tosses, and five hundred tail tosses. The output from a pseudo random generator
should appear truly random. Thus the output should be about half zeros and half ones,
hence a hypothetical output of an idealized generator of a truly random sequence can
serve as a benchmark for the evaluation of a pseudorandom generator. This method of
benchmarking pseudorandom generators is used in NIST’s statistical test suite [93], and
is a good tool to perform the statistical analysis of the new stream cipher, since the cipher
generator should work as a pseudorandom generator.

As the output from a pseudorandom generator should appear totally random, the
output from the generator should also be unpredictable if the seed1 is unknown. The
next output number from the output sequence should be unpredictable in spite of any
knowledge of the previous random numbers in the sequence. This property is known as
forward unpredictability. It should also be infeasible to determine the seed from knowl-
edge of any previously generated numbers, i.e. backward unpredictability is also required
for pseudorandom generators. There should be no correlation between the seed and any
value generatad from that seed.

4.2 Testing Procedure

Randomness is a probabilistic property, meaning that the properties of a random se-
quence can be characterized and described in terms of probability.

There are an infinite number of possible statistical tests, each assessing the presence
or absence of a pattern, which, if detected, would indicate that the sequence is nonran-
dom. Because there are so many tests for judging whether a sequence is random or not,
there will never be a finite set or a complete set of tests to determine wheter a sequence
appears truly random or not. Care must also be taken to give an absolute conclusion
whether a sequence appears truly random or not based on statistical testing [93].

A statistical test is always formulated to test a specific null hypothesis (H0). The null
hypotesis is what we want to prove, and in this scenario, where we want to test a stream
cipher generator, we want the sequence being tested to appear random. Associated with
the null hypothesis is always an alternative hypothesis (H1)2. When testing the custom
stream cipher, the alternative hypothesis is that she tested sequence is not random. For
each test run against the custom cipher, a decicion or conclusion is derived that accepts
or rejects the null hypothesis, i.e., whether the stream cipher generator is producing
random values or not.

1In the case of the new cipher, the seed is the key given for the specific encryption.
2H1 is sometimes refered to as Ha in literature.
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For each test conducted, a relevant randomness statistic must be chosen to determine
whether or not to accept or reject the null hypothesis. If we assume randomness, such
a statistic has a distribution of possible values. A mathematical model can be used to
generate a theoretical reference of this statistical distribution under the null hypothesis.
From this theoretical reference distribution, a critical value is determined. During a test,
a test statistic value is computed from the sequence being tested. Then the test statistic
value is compared to the critical value. If the test statistic value exceeds the critical
value, the null hypothesis for randomness is rejected, and the H1 hypothesis is accepted.
Otherwise, the null hypothesis is accepted, and the H1 hypothesis is rejected.

Statistical hypothesis testing is a conclusion-generation procedure that always has
one out of two possible outcomes, either accept H0 or accept H1. Based on a truth table
a statistical hypothesis testing can have four possible outcomes, see Table 4.

Real Situation Conclusion: Accept H0 Conclusion: Accept H1

Data is random (H0 is
true)

No error Type 1 error

Data is not random (H1 is
true

Type II error No error

Table 4: Hypothesis truth table

If the tested sequence is, in truth, random, then a conclusion to reject the null hypoth-
esis will occur a small percentage of the time. To make this wrong conclusion is called a
Type I error. On the other hand, if the data, in truth, is non-random, then a conclusion
to accept the null hypothesis is called a Type II error. The other two possible outcomes
from the test are correct conclusions.

The probability of a Type I error is often called the level of significance of the statistical
test. This probability is most often set prior to a statistical test and is denoted as α.
When testing for randomness, α is the probability that the test will indicate that the
test sequence is not random when it really is random. A sequence apperars to have
non-random properties even when a "good" random generator produced the sequence.
Common values of α in cryptography are about 0.01 [93], and we shall use this value for
the later statistical testing.

The probability of a Type II error is denoted as β. For a statistical test, β is the
probability that the test will indicate that the sequence is random when it is not. A "bad"
generator may produce a sequence that apperars to have random properties. Unlike α,
β is not a fixed value. Because there are an infinite number of ways that a data stream
can be non-random, β can take on equally many values.

One of the primary goals of the statistical testing is to minimize the probability of a
Type II error, i.e., to minimize the probability of accepting a sequence being produced by
a good generator when the generator was actually bad. Type II errors is most common
to commit when it comes to almost all statistical testing, this because we often want the
H0 hypothesis to be correct. This is also the most dangerous mistake to make. When we
perform statistical testing on random sequences, the probabilities α and β are related to
each other and to the size n of the tested sequence in such a way that if two of them are
specified, the third value is automatically determined. In practice, the usual procedure is
to select a sample sequence of size n and a value for α. Then a critical point for a given
statistic is selected that will produce the smallest β( the probability of a Type II error).
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The cutoff point for acceptability is chosen such that the probability of falsely accepting
a sequence as random has the smallest possible value.

Each test conducted on the generator is based on a calculated test statistic value,
which is a function of the data. If the test statistic value is S and the critical value is t,
then the Type I error probability is given by

P(S > t|H0istrue) = P(rejectH0|H0istrue).

The Type II error probability is gived by

P(S ≤ t|H0isfalse) = P(acceptH0 |H0isfalse).

The test statistic is used to calculate a P-value that summarizes the strength of the ev-
idence against the null hypothesis. For these tests, each P-value is the probability that
a perfect random number generator would have produced a sequense less random than
the sequence that was tested, given the kind of non-randomness assessed by the test. If a
P-value for a test is determined to be equal to 1, then the sequence appears to have per-
fect randomness. A P-value of zero indicates that the sequence appears to be completely
non-random. The significance level α can be chosen for each test (Typically in the range
[0.001, 0.01]). If P − value ≥ α, then the null hypothesis is accepted, and we conclude
the sequence to appear random for the particular test. If P − value < α then the null
hypothesis is rejected, and we conclude the sequence to appear non-random.

As an example, if α is set to 0.01, we would expect 1 sequence out of 100 sequences
rejected by the test if the sequence was random. A P − value ≥ 0.01 would mean
that the sequence would be concidered to be random with a confidence of 99%. A
P − value < 0.01 would lead to a conclusion that the sequence is non-random with a
confidence of 99%.

There are three assumptions we have to make with respect to the random binary
sequences being tested.

• Uniformity: At any point in the generation of random or pseudorandom bits, the
occurrence of a zero or a 1 is equally likely, i.e., the probability of each is exactly 1/2.
The expected number of zeroes (or ones) is n/2, where n is the sequence length.

• Scalability: Any test applied to a sequence can also be applied to subsequences ex-
tracted at random. If a sequence is random, then any such extracted subsequence
should also be random. Hence, any extracted subsequence should pass any test for
randomness.

• Consistency: The behavior of a generator must be consistent across starting values. It
is inadequate to test a generator based on the output from a single seed.

4.3 Applied Tests

Beneath follow results obtained when applying different statistical tests from the NIST
Special Publication 800-22 [93] on the custom cipher. A more detailed description of the
tests can also be found in [93]. Ten bitstreams are generated from the custom stream
cipher design, each with a different key as seed input for the generator. The bitstreams
are 1,000,000 bits long. The significance level α is set to be 0.01 for all tests if otherwise
not specified.
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There are some standard functions used with the statistical results to generate the
different P-values. The Complementary Error Function (denoted as the function erfc in
ANSI C math.h library), given by

erfc(z) =
2√
π

∫∞

z

e−u2

du.

The Gamma Function (igamc), given by

Γ(z) =

∫∞

z

tz−1e−tdt.

Based on the Gamma Function, is the Incomplete Gamma Function. Depending on the
values of its parameters α and x, the incomplete gamma function may be approximated
using either a continued fraction development or a series development.

P(a, x) ≡
γ(a, x)

Γ(a)
≡

1

Γ(a)

∫x

0

e−tta−1dt

, where P(a, 0) = 0 and P(a,∞) = 1.

Q(a, x) ≡ 1− P(a, x) ≡ Γ(a, x)

Γ(a)
≡ 1

Γ(a)

∫x

0

e−tta−1dt

, where Q(a, 0) = 1 and Q(a,∞) = 0.
Table 5 lists the symbols which are most used when describing the different tests.

Symbol Description
n The length of a given bitsequence
ε The sequence of bits generated by the

cipher
M Block length

Table 5: Notation Symbols.

Below follows results obtained from different statistical tests applied on the custom
cipher.

4.3.1 Frequency (Monobit) Test

The basic idea behind this test is to calculate the numbers of ones and zeroes in the bit
sequence tested. The distribution should be about the same number of ones and zeroes.
The test statistic for this test is given by

Sobs =
|Sn|√
n

, where |Sn| is the sum of the bit sequence if the bit 0 is replaced with -1, and n is
the sequence length. The P-value is generated by applying the Complementary Error
Function

P − value = erfc

(

Sobs√
2

)

.

Table 6 shows the different p-values calculated with the entire 1,000,000 bit bit-
streams as input.
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Bitstream # Number of 0s P-value
1 500457 0.360717
2 500433 0.386490
3 499946 0.913996
4 500358 0.473991
5 500199 0.690630
6 499866 0.788699
7 499959 0.934647
8 500264 0.597499
9 500303 0.544515
10 499678 0.519575

Table 6: Frequency Test, P-values with entire bitstream as input.

As we can see from Table 6, all bitstream P-values are ≥ 0.01, which is the signifcance
level α. This indicates that all the ten tested sequences appear to be random, and pass
this test.

If we generate 1000 substrings from the bitstreams, each of the length 1000 bits, we
can look at the proportion of substring sequences, which pass this particular test. When
α is set to 0.01, we assume that 1 out of 100 sequences fails to pass the test. The range
of acceptable proportions is determined using the confidence interval defined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1000
= .99 ± 0.0094392 for a sample size of 1000. This again, results in that

the proportion should lie above 0.9805607 for this particular test. Figure 6 shows the
proportion value for the substrings. Looking at the figure we can conclude that the
sequences tested for every bitstream appears to be random, and passes the frequency
test.

The distribution of the p-values should also be uniform for the bitstreams generated.
To examine the bitreams for uniformity, we can draw a simple histogram. In this his-
togram, the interval between 0 and 1 is divided into 10 sub-intervals, and the P-values
that lie within each sub-interval are counted and displayed. Figure 7 and 8, shows the
distribution of p-values for the bitstreams generated with respectively key 1 and key 7.
The streams selected for evaluation were arbritary selected.

As we can conclude from the graphs, the distribution seems quite uniform. How-
ever the sub-interval between 0.8 and 0.9 has thee highest count of p-values in both
keystreams. It might be interesting to see if this appears to be the case for more bit-
streams generated with different keys.

4.3.2 Frequency Test within a Block

The focus of this test is the proportion of ones within M-bit blocks. The purpose is
to determine wheter the frequency of ones in an M-bit block is approximately M/2, as
would be expected under an assumption of randomness.

A measure of how well the observed proportion of ones within a given M-bit match
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Figure 6: Frequency Test Proportion Distribution

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.2  0.4  0.6  0.8  1

F
re

qu
en

cy
 C

ou
nt

Uniform Distribution of P-values

Figure 7: Frequency Test P-value Distribution for Bitsream 1
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Figure 8: Frequency Test P-value Distribution for Bitstream 7

the expected proportion 1/2 is given by

X2(obs) = 4M

N∑

i=1

(πi − 1/2)2

, where πi is the proportion of ones in each M-bit block given by the equation

πi =

∑M

j=1 ε(i−1)M+j

M
,

for (1 ≤ i ≤ N), M = blocklength, n = bitsequence length, N = | n
M

|. non-overlapping
blocks, ε is the sequence of bits. The P-value is generated by applying the Incomplete
Gamma Function

P − value = Q(N/2, x2(obs)/2.

We generate 1000 substrings from the bitstreams, each of the length 1000 bit. Then
we divide each substring intoM = 50 bit blocks. α is set to 0.01. The range of acceptable
proportions is determined using the confidence interval defined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval

.99 ± 3
√

.99(.01)

1000
= .99 ± 0.0094392 for a sample size of 1000. This again means that

the proportion should lie above 0.9805607 for this particular test. Figure 9 shows the
proportion value for the blocks within the substrings. Looking at the figure, we can con-
clude that the sequences tested for every bitstream appear to be random, and pass the
frequency test, since all proportion values ≥ α
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Figure 9: Frequency Block Test Proportion Distribution

Also here, we can draw a similar histogram of the distribution of the p-values to
check uniformity. Figure 10 and 11, show the distribution of p-values for the bitstreams
generated with respectively key 1 and key 7. The streams selected for evaluation were
arbitrarily selected.

As we can conclude from the graphs, the P-value distribution seems quite uniform.

4.3.3 Runs Test

This test focuses on the number of runs in a sequence, where a run is an uninterrupted
sequence of identical bits. A run of length k consists of exactly k identical bits and is
bounded before and after with a bit of the opposite value. The purpose of this test is to
determine whether the number of runs of ones and zeros of various lengths is as expected
for a random sequence.

The test statistic for this test is given by

Vn(obs) =

n−1∑

k=1

r(k) + 1

, where r(K) = 0 if εk = εk+1, and r(k) = 1 othervise. The P-value is given by

P − value = erfc

(

|Vn(obs) − 2nπ(1− π)|

2
√

2nπ(1− π)

)

, where π is the pre-test proportion of ones in the input sequence: π =
∑

jεj

n
.

We generate 1000 substrings from the bitstreams, each of the length 1000 bits. α
is set to 0.01. The range of acceptable proportions is determined using the confidence
interval defined as

p̂± 3
√

p̂(1− p̂)

m
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Figure 10: Block Frequency Test, P-value Distribution for Bitsream 1
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Figure 11: Block Frequency Test, P-value Distribution for Bitstream 7
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Figure 12: Runs Test Proportion Distribution

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval

.99 ± 3

√

.99(.01)

1000
= .99 ± 0.0094392 for a sample size of 1000. This again, gives that

the proportion should lie above 0.9805607 for this particular test. Figure 12 shows the
proportion value for the blocks within the substrings. Looking at the figure, we can
conclude that the subsequences generated from three different bitstreams appear to be
random. The subsequences generated from the other bitstreams have values which lie
below the acceptance confidence interval used when 1000 subsequences are generated.
When testing only 100 subsequences from each bitstream, the acceptance value becomes
0.960150. Each bitstream passed this test for 100 generated subsequences. The conclu-
sion is that more bitstreams should be tested to give a clearer answer wheter the cipher
passes the Runs test or not.

Also here, we can draw a similar histogram of the distribution of the p-values to
check uniformity. Figures 13 and 14, show the distribution of p-values for the bitstreams
generated with respectivly key 1 and key 7. The streams selected for evaluation were
arbitrarily selected.

As we can conclude from the graphs, the P-value distribution seems quite uniform.

4.3.4 Test for the Longest Run of Ones in a Block

This test focuses on the longest run of ones within M-bit blocks. The purpose of this test is
to determine whether the length of the longest run of ones within the tested sequence is
consistent with the length of the longest run of ones that would be expected in a random
sequence.

M is pre-defined in the testing utility, and for a bitsequence of length 1000, M is set
to 8.

The test statistic for this test X2(obs) measures how well the observed longest run
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Figure 13: Runs Test, P-value Distribution for Bitsream 1
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Figure 14: Runs Test, P-value Distribution for Bitstream 7
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Figure 15: Longest Run Test Proportion Distribution

length within M-bit blocks matches the expected longest length within M-bit blocks. The
function to calculate this value is found in [93]. The P-value is given by

P − value = Γ

(

3

2
,
X2(obs)

2

)

.

We generate 1000 substrings from the bitstreams, each of the length 1000 bit. α is set
to 0.01. The range of acceptable proportions is determined using the confidence interval
defined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1000
= .99 ± 0.0094392 for a sample size of 1000. This again, gives that the

proportion should lie above 0.9805607 for this particular test. Figure 15 shows the
proportion value for the blocks within the substrings. Looking at the figure, we can
conclude that all the subsequences pass the test, and we can conclude that the sequences
appear random for this test.

4.3.5 Binary Matrix Rank Test

The focus of this test is the rank of disjoint sub-matrices of the entire bit sequence. The
purpose of this test is to check for linear dependence among fixed length substrings of
the orginal sequence.

The test statistic for this test X2(obs) is a measure of how well the observed number
of ranks of various orders match the expected number of ranks under the assumption of
randomness.

The P-value is given by
P − value = e−X2(obs)/2.
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Figure 16: Binary Matrx Rank Test Proportion

In this test M is the number of rows in each matrix, this is default set to 32, and is
what we shall operate with. Q is the number of colums in each matrix, and is also set to
32, which we have chosen to work with. N = | n

MQ
| disjoint blocks, and each row of this

matrix blocks is filled with successive Q-bit blocks of the original sequence ε. A criterion
for running this test, is that the minimum number of bits in each sequence to be tested
are n ≥ 38MQ, i.e., each subsequence we want to test must be at least 38,912 bits long.

We generate 25 substrings from the bitstreams, each of the length 38,912 bits. α is set
to 0.01. The range of acceptable proportions is determined using the confidence interval
defined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

25
= .99± 0.05969 for a sample size of 25. This again, gives that the proportion

should lie above 0.93031 for this particular test.
Figure 16 shows the proportion value for the blocks within the substrings. Looking

at the figure, we can conclude that the subsequences generated from all ten bitstreams
appear to be random.

Also here, we can draw a similar histogram of the distribution of the p-values to
check uniformity. Figures 17 and 18, show the distribution of p-values for the bitstreams
generated with respectively key 1 and key 7. The streams selected for evaluation were
arbitrarily selected.

As we can conclude from the graphs, the P-value distribution seems quite uniform.
However, larger bit sequences should be tested to give a more certtain conclusion.
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Figure 17: Binary Matrix Rank, P-value Distribution for Bitsream 1
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Figure 18: Binary Matrix Rank, P-value Distribution for Bitstream 7
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Figure 19: Discrete Fourier Transform Test Proportion

4.3.6 Discrete Fourier Transform (Spectral) Test

The focus of this test are the peak heights in Discrete Fourier Transform of the sequence.
The purpose is to detect periodic repetitive patterns that are near each other in the
tested sequence that would indicate a deviation from the assumption of randomness.
The intention is to detect whether the number of peaks exceeding a 95% threshold is
significantly different than 5%.

The test statistic for this test d, is the normalized difference between the observed
and the expected number of frequency components that are beyond the 95 % threshold.
The reference distribution for the test statistic is the normal distribution.

The P-value is given by

P − value = erfc

(

|d|√
2

)

.

We generate 1000 substrings from the bitstreams, each of the length 1000 bit. α is set
to 0.01. The range of acceptable proportions is determined using the confidence interval
defined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1000
= .99 ± 0.0094392 for a sample size of 1000. This again, gives that the

proportion should lie above 0.9805607 for this particular test.
Figure 19 shows the proportion value for the blocks within the substrings. Looking

at the figure, we can conclude that the subsequences generated from all ten bitstreams
appear to be random.

Also here, we can draw a similar histogram of the distribution of the p-values to
check uniformity. Figures 20 and 21, show the distribution of p-values for the bitstreams
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Figure 20: Discrete Fourier Transform, P-value Distribution for Bitsream 1

generated with respectively key 1 and key 7. The streams selected for evaluation were
arbitrarily selected.

As we can conclude from the graphs, the P-value distribution seems quite similar for
the two different bit streams. The interval between 0.7 and 0.8 however is 0 for all the
bit streams. This is also the case for all the other algorithms which come with the testing
suite which we have tested. The conclusion is that this behaviour is uniform for the test
applied on different generators, and that the distribution of the P-values is good.

4.3.7 Non-overlapping Template Matching Test

The focus of this test is the number of occurrences of pre-specified target strings. The
purpose of this test is to detect whether the generator produces too many occurrences
of a given non-periodic (aperiodic) pattern. For this test, an m-bit window is used to
search for a specific m-bit pattern. If the pattern is not found, the window slides one bit
position. If the pattern is found, the window is reset to the bit after the pattern, and the
search resumes.

The test statistic for this test X2(obs), is a measure of how well the observed number
of template "hits" matches the expected number of template "hits" (under the assumption
of randomness). The reference distribution for the test statistic is the X2 distribution.

The P-value is given by

P − value = Γ

(

N

2
,
X2(obs)

2

)

, where N is the number of independent blocks = 8.
This test is assuming a bit sequence of length 106, thus we apply the test on the entire

bitstreams (no subsequences are generated). α is set to 0.01.
The range of acceptable proportions is determined using the confidence interval de-

44



Protecting Sensitive Data on a PC by a Custom Algorithm

 0

 50

 100

 150

 200

 250

 0  0.2  0.4  0.6  0.8  1

F
re

qu
en

cy
 C

ou
nt

Uniform Distribution of P-values

Figure 21: Discrete Fourier Transform, P-value Distribution for Bitstream 7

fined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1
= .99 ± 0.298496 for a sample size of 1. This again, gives that the proportion

should lie above 0.69150 for this particular test. However, since only one sequence is
tested, the conclusion can only be that the sequence passes the test, or not.

We have chosen the template length to be 9, which results in that a P-value will be
generated for 148 different aperiodic templates. Table 7 shows the results for the ten
bit sequences. The ten different bit sequences tested all fail to pass different aperiodic
patterns than the other sequences. The second bitstream fails only for one of the 148
sequences. This should indicate that the stream would appear to be random, however
larger sample sizes must be tested to give a more certain conclusion.

4.3.8 Overlapping Template Matching Test

The focus of this test is the number of occurrences of pre-specified target strings. The
purpose of this test is to detect wheter the generator produces too many occurrences
of a given non-periodic (aperiodic) pattern. For this test, an m-bit window is used to
search for a specific m-bit pattern. If the pattern is not found, the window slides one bit
position. The difference between this test and the test described in Section 4.3.7 is that
when the pattern is found, the window slides only one bit before resuming the search.

The test statistic for this test X2(obs), is a measure of how well the observed number
of template "hits" matches the expected number of template "hits" (under the assumption
of randomness). The reference distribution for the test statistic is the X2 distribution.
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Bitstream Templates not passed(F) F/148
1 22 0.149
2 1 0.007
3 21 0.142
4 26 0.176
5 23 0.155
6 21 0.142
7 21 0.142
8 21 0.142
9 22 0.149
10 27 0.182

Table 7: Non-overlapping Templates Stats.

The P-value is given by

P − value = Γ

(

5

2
,
X2(obs)

2

)

.

This test is assuming a bit sequence of length 106, thus we apply the test on the entire
bitstreams (no subsequences are generated). α is set to 0.01.

The range of acceptable proportions is determined using the confidence interval de-
fined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1
= .99 ± 0.298496 for a sample size of 1. This again, gives that the proportion

should lie above 0.69150 for this particular test. However, since only one sequence is
tested, the conclusion can only be that the sequence passes the test, or not.

We have chosen the template length to be 9. For this test, only one P-value is com-
puted for each sequence. Table 8 shows the results for the ten bit sequences. The only bit-
stream which passes this test is the second bitstream, which mirrors the results obtained
in Section 4.3.7. Larger sample sizes must be tested to give a more certain conclusion
whether or not this indicates non-randomness for this particular test.

Bitstream Templates passed/failed
(P/F)

1 F
2 P
3 F
4 F
5 F
6 F
7 F
8 F
9 F
10 F

Table 8: Overlapping Templates Stats.
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4.3.9 Maurer’s "Universal Statistical" Test

The focus of this test is the number of bits between matching patterns (a measure that
is related to the length of a compressed sequence). The purpose of the test is to detect
whether or not the sequence can be significantly compressed without loss of information.
A significantly compressible sequence is considered to be non-random.

The test statistic for this test X2(obs), is a measure of how well the observed number
of template "hits" matches the expected number of template "hits" (under the assumption
of randomness). The reference distribution for the test statistic is the X2 distribution.

The P-value is given by

P − value = Γ

(

5

2
,
X2(obs)

2

)

.

This test is assuming a bit sequence of length 106, thus we apply the test on the entire
bitstreams (no subsequences are generated). α is set to 0.01.

The range of acceptable proportions is determined using the confidence interval de-
fined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1
= .99 ± 0.298496 for a sample size of 1. This again, gives that the proportion

should lie above 0.69150 for this particular test. However, since only one sequence is
tested, the conclusion can only be that the sequence passes the test, or not.

For this test, pre-defined values are set for different sequence lengths to be tested.
We shall test sequences of length 106. For this length, the test blocksize is L = 7, and
the number of initialization blocks is set to Q = 10 × 2L = 1280. Table 9 shows the
results for the ten bitsequences. There were two bitstreams which did not pass this test.
The P-values calculated for these two bitstreams 3 and 9, were respectively P − value =

0.004126 and 0.004128. Both values are P − value ≤ α, which might indicate non-
randomness for this two particular sequences. However, 8 out of 10 sequences passed
the test, thus larger sample sizes must be tested to give a more certain conclusion wheter
or not this indicates non-randomness for the cipher.

Bitstream Passed/Failed (P/F)
1 P
2 P
3 F
4 P
5 P
6 P
7 P
8 P
9 F
10 P

Table 9: Maurer’s "Universal Statistical" Test Stats.

4.3.10 Lempel-Ziv Compression Test

The focus of this test is the number of cumulatively distinct patterns (words) in the
sequence. The purpose of the test is to determine how much the tested sequence can
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be compressed. If a sequence can be significantly compressed, it is considered to be
non-random. A random sequence will have a characteristic number of distinct patterns.

The test statistic for this test W(obs), is the number of disjoint and cumulatively
distinct words in the target sequence. The reference distribution for the test statistic is
the normal distribution.

The P-value is given by

P − value =
1

2
erfc

(

µ−W(obs)√
2σ2

)

, where µ = 69586.25 and σ =
√
70.448718 for a sequence size n = 106.

This test is assuming a bit sequence of length 106, thus we apply the test on the entire
bitstreams (no subsequences are generated). α is set to 0.01.

The range of acceptable proportions is determined using the confidence interval de-
fined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1
= .99 ± 0.298496 for a sample size of 1. This again, gives that the proportion

should lie above 0.69150 for this particular test. However, since only one sequence is
tested, the conclusion can only be that the sequence passes the test, or not.

For this test, it is recommended to use sample sizes n ≥ 106, thus we apply the test
on the entire ten bitstreams.

Table 10 shows the results for the ten bit sequences. There were three bitstreams
which did not pass this test. The number of disjoint and cumulative words for the se-
quences ranges from 69558 to 69584. This indicates all the bitstreams are close to µ and
close to pass this test for randomness. However, only 7 out of 10 sequences passed the
test, thus larger sample sizes must be tested to give a more certain conclusion wheter or
not this indicates randomness or not.

Bitstream Passed/Failed (P/F)
1 F
2 F
3 P
4 F
5 P
6 P
7 P
8 P
9 P
10 P

Table 10: Lempel-Ziv Compression Test.

4.3.11 Serial Test

The focus of this test is the frequency of all possible overlappingm-bit patterns across the
entire sequence. The purpose of the test is to determine wheter the number of occurences
of the 2m m-bit overlapping patterns is approximately the same as would be expected
for a random sequence. Random sequences have uniformity, meaning that every m-bit
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pattern has the same chance of appearing as every other m-bit pattern. For m = 1, this
test will be equivalent to the Frequency test described in Section 4.3.1.

The test statistic for this test ∇Ψ2
m(obs) and ∇2ψ2

m, is a measure of how well
the observed frequencies of m-bit patterns match the expected frequencies of the m-bit
patterns. The reference distribution for the test statistic is the X2 distribution.

Two P-values for this test are computed, given by

P − value1 = Γ
(

2m−2,∇ψ2
m

)

, and
P − value1 = Γ

(

2m−3,∇ψ2
m

)

, where m is the length in bits of each block.
The range of acceptable proportions is determined using the confidence interval de-

fined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1
= .99 ± 0.298496 for a sample size of 1. This again, gives that the proportion

should lie above 0.69150 for this particular test. However, since only one sequence is
tested, the conclusion can only be that the sequence passes the test, or not.

For this test, it is recommended to choose m and n such that m < | log2 n| − 2. We
first apply the test on the entire ten bitstreams. We choose n = 106 and m = 2. α is set
to 0.01.

Table 11 shows the results for the ten bit sequences. The first two bitstreams passed
this test (Both P − values ≥ α). However the last 8 bit sequences did not. The inner
state of the first two bitsequences (which passed the test) were initialized with a human
generated seed. The last eight sequences were initialized with automaticly generated
seeds. This might or might not be a coincidence, however further investigation should
be conducted on this property. The criterionm < | log2 n|−2, also holds for bit sequences
of length 1000. We generate 1000 subsequences of length 1000 for each bitstream to get
further analysis.

The range of acceptable proportions for this test is determined by using the confidence
interval defined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1000
= .99 ± 0.0094392 for a sample size of 1000. This again, gives that the

proportion should lie above 0.9805607 for this particular test.
Table 12 shows the resulting proportion of sub sequences which now passes this test.

In this test, three out of the ten bit sequences fail, indicating a better result for the cipher.
Further bit sequences should be tested to give a final conclusion for this test.

4.3.12 Approximate Entropy Test

The focus of this test is the frequency off all possible overlapping m-bit patterns across
the entire sequence (as the test described in Section 4.3.11). The purpose of the test is
to compare the frequency of overlapping blocks of two consecutive/adjacent lengths (m
and m + 1) against the expected result for a random sequence.
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Bitstream P-value1 P-value2
1 0.291771 0.201956
2 0.357241 0.252624
3 0.000000 0.000000
4 0.000000 0.000000
5 0.000000 0.000000
6 0.000000 0.000000
7 0.000000 0.000000
8 0.000000 0.000000
9 0.000000 0.000000
10 0.000000 0.000000

Table 11: Serial Test on samples n = 106 .

Bitstream Prop. passed for P-val.1 Prop. passed for P-val.2
1 0.9900 0.9910
2 0.9930 0.9890
3 0.9820 0.9730
4 0.9890 0.9820
5 0.9820 0.9810
6 0.9860 0.9870
7 0.9860 0.9770
8 0.9890 0.9840
9 0.9880 0.9780
10 0.9840 0.9810

Table 12: Serial Test on samples where n = 103 .

The test statistic for this test X2(obs) = 2n[log 2 − ApEn(m)], where ApEn(m) =

ϕ(m) − ϕ(m+1), is a measure of how well the observed value of ApEn(m) matches the
expected value.

The P-value for this test given by

P − value = igamc

(

2m−1,
X2

2

)

, where m is the length in bits of each block.
The range of acceptable proportions is determined using the confidence interval de-

fined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1
= .99± 0.298496 for a sample size of 1. This again means that the proportion

should lie above 0.69150 for this particular test. However, since only one sequence is
tested, the conclusion can only be that the sequence passes the test, or not.

For this test, it is recommended to choose m and n such that m < | log2 n| − 2. We
first apply the test on the entire ten bitstreams. We choose n = 106 and m = 2. α is set
to 0.01.

Table 13 shows the results for the ten bit sequences. The first two bitstreams passed
this test(P−values ≥ α). However the last 8 bit sequences did not. The inner state of the
first two bitsequences (which passed the test) were initialized with a human generated
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seed. The last eight sequences were initialized with automaticly generated seeds. Again,
this special property of the test requires more attention. The criterion m < | log2 n| − 2

also holds for bit sequences of length 1000. We generate 1000 subsequences of length
1000 for each bitstream to get further analysis.

The range of acceptable proportions for this test is determined by using the confidence
interval defined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1000
= .99 ± 0.0094392 for a sample size of 1000. This again, gives that the

proportion should lie above 0.9805607 for this particular test.
Table 14 shows the resulting proportion of subsequences which now passes this test.

In this test, one out of the ten bit sequences fails. This result looks promising for passing
the test, however, even further bit sequences should be tested to give a final conclusion.

Bitstream P-value
1 0.264642
2 0.563521
3 0.000000
4 0.000000
5 0.000000
6 0.000000
7 0.000000
8 0.000000
9 0.000000
10 0.000000

Table 13: Approximate Entropy Test on samples n = 106 .

Bitstream Proportion passed test
1 0.9910
2 0.9900
3 0.9840
4 0.9910
5 0.9790
6 0.9850
7 0.9890
8 0.9890
9 0.9880
10 0.9830

Table 14: Approximate Entropy Test on samples where n = 103 .

4.3.13 Cumulative Sums (Cusum) Test

The purpose of this test is the maximal excursion (from zero) of the random walk defined
by the cumulative sum of adjusted (-1,+1) digits in the sequence. The purpose of the
test is to determine whether the cumulative sum of the partial sequences occuring in
the tested sequence is too large or too small relative to the expected behavior of that
cumulative sum for random sequences. This cumulative sum may be considered as a
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Figure 22: Forward Proportion Distribution

random walk. For a random sequence, the excursions of the random walk should be
zero. For certain types of non-random sequences, the excursions of this random walk
from zero will be large.

The test statistic for this test, z, is the largest excursion from the origin of the cumu-
lative sums in the corresponding (-1,+1) sequence.

We generate 1000 substrings from the bitstreams, each of the length 1000 bits. α
is set to 0.01. The range of acceptable proportions is determined using the confidence
interval defined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1000
= .99 ± 0.0094392 for a sample size of 1000. This again, gives that the

proportion should lie above 0.9805607 for this particular test.
This test generates two P-values. One when iterating forward through the sequence,

and one going backwards in the sequence. Figure 22 shows the proportion of substrings
pasing this test iterating forwards. Looking at the figure, we can conclude that the sub-
sequences generated from the bitstreams appear to be random.

We can draw a histogram of the distribution of the p-values to check uniformity.
Figures 23 and 24, show the distribution of p-values for the bitstreams generated with
respectively key 1 and key 7. The streams selected for evaluation were arbritary selected.

As we can conclude from the graphs, the P-value distribution seems quite uniform.
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Figure 23: Cummulative Sums Test, P-value Distribution for Bitsream 1
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Figure 24: Cummulative Sums Test, P-value Distribution for Bitstream 7
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4.3.14 Random Excursions Test

The focus of this test is the number of cycles having exactly K visits in a cumulative sum
random walk. The cumulative random walk is derived from partial sums after the (0,1)
sequence is transferred to the appropriate (-1,+1) sequence. A cycle of random walk
consists of a sequence of steps of unit length taken at random that begin at, and return
to the origin. The purpose of this test is to determine if the number of visits to a particular
state within a cycle deviates from what one would expect for a random sequence. This
test is in practice a series of eight tests and conclusions, one test and conclusion for each
of the states: -4, -3, -2, -1, +1, +2, +3, +4.

The test statistic for this test X2(obs), for a given state x, is a measure of how well the
observed number of state visits within a cycle match the expected number of state visits
within a cycle, under the assumption of randomness. The reference distribution for the
test statistic is the X2 distribution.

The P-value for this test given by

P − valuex = Γ

(

5

2
,
X2(obs)

2

)

.

The range of acceptable proportions is determined using the confidence interval de-
fined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1
= .99 ± 0.298496 for a sample size of 1. This again, gives that the proportion

should lie above 0.69150 for this particular test. However, since only one sequence is
tested, the conclusion can only be that the sequence passes the test, or not.

For this test, it is recommended to choose n such that n ≥ 106. α is set to 0.01.
Table 15 shows the results for the ten bit sequences. The first six bitstreams passed

this test (P − values ≥ α) for all states. Bitstream number 7 had one state (x = −1)
that did not pass, but the rest of the states passed. A complete evaluation for the last
three bitstreams could not be computed because not enough cycles were produced for
the sequences. The seven bitstreams that were completely evaluated indicate that the
sequences produced by the cipher are random, however larger bit sequences should be
tested, so that all sequences would be equaly evaluated to give a final conclusion.

Bitstream Passed/Failed(-4,-3,-2,-
1,+1,+2,+3,+4)

1 P,P,P,P,P,P,P,P
2 P,P,P,P,P,P,P,P
3 P,P,P,P,P,P,P,P
4 P,P,P,P,P,P,P,P
5 P,P,P,P,P,P,P,P
6 P,P,P,P,P,P,P,P
7 P,P,P,F,P,P,P,P
8 Not enough cycles produced
9 Not enough cycles produced
10 Not enough cycles produced

Table 15: Random excursions Test Statistics.
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4.3.15 Random Excursions Variant Test

The focus of this test is the number of times that a particular state is visited in a cumula-
tive sum random walk. The purpose of this test is to detect deviations from the expected
number of visits to various states in the random walk. This test is in fact a series of
eighteen tests, one test and conclusion for each of the states: -9, -8, ..., -1, and +1, +2,
..., +9.

The test statistic for this test X2(obs), for a given state x, is a measure of how well the
observed number of state visits within a cycle match the expected number of state visits
within a cycle, under the assumption of randomness. The reference distribution for the
test statistic is the X2 distribution.

The P-value for this test given by

P − valuex = Γ

(

5

2
,
X2(obs)

2

)

.

The range of acceptable proportions is determined using the confidence interval de-
fined as

p̂± 3
√

p̂(1− p̂)

m

, where p̂ = 1 − α, and m is the sample size. This gives the confidence interval .99 ±
3

√

.99(.01)

1
= .99 ± 0.298496 for a sample size of 1. This again, gives that the proportion

should lie above 0.69150 for this particular test. However, since only one sequence is
tested, the conclusion can only be that the sequence passes the test, or not.

For this test, it is recommended to choose n such that n ≥ 106. α is set to 0.01.
Table 16 shows the results for the ten bit sequences. All states in bitstream 1, 3, 4,

5, 6, 7, passed this test (P − values ≥ α). Bitstream number 2 had one state (x = +1)
that did not pass, but the rest of the states passed. A complete evaluation for the last
three bitstreams could not be computed because not enough cycles were produced for
the sequences. The seven bitstreams that were completely evaluated indicate that the
sequences produced by the cipher are random, however larger bit sequences should be
tested, so that all sequences would be equaly evaluated to give a final conclusion.

Bitstream Not Passed States
1 All passed
2 X = +1
3 All passed
4 All passed
5 All passed
6 All passed
7 All passed
8 Not enough cycles produced
9 ANot enough cycles produced
10 Not enough cycles produced

Table 16: Random excursions Variant Test Statistics.

4.3.16 Conclusion

For most tests, the cipher seems to produce random sequences for all the different seeds
tested. However, some characteristics are worth additional attention.
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In the Serial Test, the bit sequences, which had seeds automatically generated using
the system random function in C#, did not pass the test. More research should be con-
ducted to see if this is a coincidence or not. The cipher dependency of the seeds should
also be further investigated.

The results in general look very promising regarding the randomness of the cipher.
Even though more bit streams should be tested, we conclude that the new bit stream
generator is a good generator.

4.4 Efficiency Testing

4.4.1 Introduction

The presented cipher in this thesis is a custom designed intended for running very ef-
ficiently in software, and to have high level of security. To give a benchmark of how
fast the cipher really is, the cipher is compared to some other popular ciphers. The cus-
tom cipher simulation is compared with two other implementations also in C#, the RC4
stream cipher [75] and the Rijndael (AES) block cipher [50]. The RC4 implementation
was obtained at

���� ������ ����	����	�� ����3, and the Rijndael implementation was
obtained at

���� ���� ��� �� �������� ����4.

4.4.2 Efficency Results

The test is run on a laptop with the Operating System Windows XP SP2. The CPU is Intel
Mobile 1,8 GHz, and the laptop has a physical memory of 512 MB.

Three different files with different lengths were used during the testing, file 1 with
the size 1.13 MB, file 2 with the size 57.2 MB and file 3 with size 103 MB. The key
length used for both the RC4 and Rijndael encryption were 256 bits. The custom design
used a 256 bit key in addition to the 64 bit message key. Figure 25 shows the efficiency
measured on the different files with the different ciphers. Table 17 shows the exact
results from the test.

CIPHER 1.13 MB 57.2 MB 103 MB
Custom 0.320 10.876 19.448
AES 0.521 14.441 26.318
RC4 0.581 7.811 14.220

Table 17: Efficiency results obtained on a Intel Mobile 1.8 GHz Processor.

4.4.3 Conclusion

The results show that the newly designed cipher is fast. The simulation implementa-
tion is not optimized regarding the number of system function calls, and variable types
have to be converted often, which also reduces the efficiency. The cipher is based on
software simulated linear feedback shift registers, which can be implemented in many
different ways. Further improvements of the LFSR simulation, such as the sliding win-
dow technique [94] can be applied to improve the efficiency. The cipher seems to be a
little bit slower than the RC4 algorithm. This is probably because RC4 does not make
use of LFSRs. The cipher is significantly faster than the AES implementation tested. The
RC4 and AES implementation are not tested to be working correctly, however this is an

3http://www.codeproject.com/csharp/rc4csharp.asp
4http://msdn.microsoft.com/msdnmag/issues/03/11/AES
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Figure 25: Efficiency results obtained on a Intel Mobile 1.8 GHz Processor.

assumption made, so the validity of the obtained results from these two implementations
cannot be verified. The reliability however seems to be quite good, since the same result
is produced in each run. The tests have been run on a laptop, where the operating system
has full control over the memory and the virtual memory (SWAP) files. If too much data
to fit in a certain percentage of the physical memory are accessed during the encryption,
this may influence the results by being a third factor. We would not only be measuring
the cipher efficiency, but also the operating system’s procedures to generate and handle
virtual files on the hard drive. To minimize this third factor, only files small enough to fit
in the physical memory were encrypted and tested.
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5 Discussion

5.1 Advantages/Disadvantages of Using a Custom Cipher Compared
to Publicly Known Ciphers

A custom designed cipher, where the source code is closed, can be tested by statistical
testing. The results from this testing can then be analyzed, and indications and conclu-
sions can be made to indicate that the cipher is a good cipher or not. For any adversary
wanting to break the cipher, to know the source code would be an advantage. To achieve
this on a closed source custom cipher, reverse engineering has to be applied on it, i.e.,
reversing machine code back to readable source code. To conduct reverse engineering
is possible to do, however it is often time demanding, especially if the source code was
written with code obfuscation principles in mind. With enough effort, the source code
would eventually be revealed. As an example was the RC4 algorithm reverse engineered
as early as in 1994, see Section 2.2.5.3. However, on a closed source custom cipher, ob-
taining the source code will be another obstacle or a "speed bump" on the way to breaking
the cipher. As claimed in [95], to make obstacles or "speed bumps" for adversaries, is the
best way to improve security.

The security by obscurity principle (keeping the source code hidden or secret) [30]
is a much debated principle in cryptographic research and information security litera-
ture. When discussing this matter, some claim that security by obscurity do not gain
any improved security at all, others claim that it does. One factor that is important to
consider when discussing this matter is the adversaries. For adversaries with unlimited
resources, it probably would be easier to overcome the security by obscurity problem
than for an adversary with limited resources. It is no doubt that security by obscurity
makes the process of attacking a cipher or a source code kept secret to take longer time
and demand greater resources than if all is publicly known. However, it is clear that it is
important to be security conscious when designing ciphers and source code even though
it is planned to be kept secret. If the security by obscurity principle should fail, the task
of breaking the cipher should still be an impossible task to do.

Contrary to say that a cipher might be broken in secret, we can say that open source
ciphers are available for everyone to crypt-analyze. A popular public cipher will be and
have been thoroughly analyzed, and if no big security breaches are found on them, this
can indicate that the cipher is a good design.

To generate a picture over a potential adversary is very difficult. Adversary mod-
eling is a wide topic within information security, and to make any precise model over
adversary capabilities is impossible. However, we can make some assumptions. Potential
adversaries interested in getting hold of sensitive information, will always be on the same
level of breaking a public known cipher as the open literature written on it. In addition,
any adversaries may have made discoveries and conducted successful attacks in secret.
Different ciphers may be completely broken in secret, so by using a open source cipher,
we might rely on a cipher which are already broken. By using a custom made cipher, we
can be sure that it is not already is broken. By maintaining good policies when using a
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cipher such as the one described in Chapter 3, we can be pretty sure that data encrypted
with it will remain confidential, and breaking the cipher will be hard.

5.2 Efficiency/Security Trade off in Cryptographic Algorithms for PC
protection

Traditionally, it seems to be a relationship between efficiency and security. The higher
security we want, the less efficient is the method providing the security. Each operation
a CPU has to perform takes time. Some operations are more complex and more time
demanding than others. The ideal case is to use simple operations, but to combine these
operations in a way to achieve a high level of security.

In software, large storage of data is faster to process, than data which have to be
calculated first, and then processed. On modern computers, storage space is almost
never a problem.

To know the processor which will execute the cipher running on it is also an advantage
when designing it. To know how many bits the CPU processes at the time, can be used to
gain higher efficiency. The custom cipher produces 32 bits at the time for optimization
on 32 bit CPU computers.
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6 Conclusions

Most software applications, which provide encryption of sensitive data uses passwords
or pass phrases to protect the keys used for encryption and decryption. The key is often
derived directly from the password or pass phrase in some key generation method. To
be able to retrieve the password results in finding the encryption key. Since the entropy
in such a password or pass phrase most likely is much less than in the key generated,
the security of such systems fall dramatically. Estimates show that the entropy of a 8
character long password are about the same as for a 32-bit key, hence if a 128 bit key is
wanted, we need a 98 character long password or pass phrase [96] to obtain the same
level of entropy. Thus, such software should be used with care and investigated before
given any trust.

In this thesis a new stream cipher design is presented and an implementation of the
cipher was written in C#. The cipher uses well known and analyzed techniques to build
up the cipher, such as irregular clocking and linear feedback shift registers.

Cryptanalysis performed on the cipher indicates that all the known weak properties a
stream cipher can have, which reduces the ciphers security, is handled in a good way.

Statistical testing applied to the cipher proves that the bit sequences produced by the
cipher generator appear to be random. Based on the statistical results obtained during
testing, we can conclude that the cipher generator is a good generator. Thus, the cipher
seems to be secure.

Practical experiments conducted show that the cipher runs fast in software on a 32
bit CPU. Even though the implementation of the cipher is not extensively optimized, the
testing shows that it has good efficiency statistics when compared to other ciphers.
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7 Future Work

The implementation of the cipher is in C#, and though the implementation is made with
efficiency in mind, there is still room for further optimization. Other techniques, espe-
cially the LFSR implementation in the C# simulation, can be implemented and tested.
To maximize the efficiency of the cipher, a good x86 Assembler implementation would
be necessary. New efficiency tests on the Assembler implementation of the cipher would
give much better results for the optimal efficiency for the cipher implemented in soft-
ware.

The security strength of the custom cipher can be further assessed and analyzed. A
more thorough cryptanalysis can be conducted, and the number of stitistical tests can be
expand. More sequences, both larger and generated with a larger width of seeds (keys)
can be applied to the already used statistical tests, to give even better and a more certain
conclusion if the generator is good or not.

It would be interesting to encrypt some files or data with the custom algorithm, and
then apply a greater penetration testing experiment on them. This would have given a
more practical assessment of the cipher’s security strength.

To make a user interface for easy usage of the custom cipher is necessary if it is to
be used for people with limited knowledge of programming and computers in general.
Since the cipher is implemented with object oriented design in mind, this should not be
a too difficult task to do for other not knowing the inner workings of the cipher design.
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33(1), 167Ű–226. 2.1.3

[23] Fluhrer, S., Mantin, I., & Shamir, A. 2001. Weaknesses in the Key Scheduling
Algorithm of RC4. Lecture Notes in Computer Science, 2259. Publisher: Springer-
Verlag Heidelberg. 2.1.3

[24] Dunn, A. 2003. Environment-independent performance analyses of cryptographic
algorithms. In Proceedings of the twenty-sixth Australasian computer science con-

ference on Conference in research and practice in information technology, 265–274.
Australian Computer Society, Inc. 2.1.3

[25] Guttman, E., Leong, L., & Malkin, G. 1999. Users’ Security Handbook. 2.1.3

[26] Wroblewski, G. 2002. General Method of Program Code Obfuscation. 2.1.4

[27] Dahll, G., Barnes, M., & Bishop, P. December 1990. Software diversity: way to
enhance safety? Information and Software Technology, 32(10), 677–685. Publisher:
Butterworth-Heinemann. 2.1.4

[28] Link, H. & Neumann, W. Clarifying Obfuscation: Improving the Security of White-
Box Encoding. 2.1.4

[29] Wang, C., Hill, J., Knight, J., & Davidson, J. 2000. Software Tamper Resistance:
Obstructing Static Analysis of Programs. 2.1.4

[30] Mercuri, R. T. & Neumann, P. G. November 1990. Inside Risks Security by Obscurity.
Communications of the ACM, 46(11), 160. 2.1.4, 5.1

[31] Chikofsky, E. J. & II, J. H. C. January 1990. Reverse Engineering and Design
Recovery: A Taxonomy. 7(1), 13–17. From the IEEE Archive. 2.1.4

[32] van Oorschot, P. C. December 2003. Revisiting Software Protection. Information

Security: 6th International Conference, ISC 2003, Bristol, UK, October 1-3, 2003,
2851, 1–13. 2.1.4, 2.1.5

[33] Ghosh, A. K. & McGraw, G. 1998. An Approach for Certifying Security in Software
Components. 21st National Information Systems Security Conferance, October 5-9,

1998. 2.1.4

66

http://www.ietf.org/rfc/rfc2440.txt
http://www.cp-lab.com/
http://www.hilarytech.com/
http://www.cypherus.com/


Protecting Sensitive Data on a PC by a Custom Algorithm

[34] Amy Carroll, Mario Juarez, J. P. & Leininger, T. Microsoft
’Palladium’ A Business Overview. Technical report, Microsoft,
���� ������ �� �������� ���� ���	��������	����	���������
����	�
��

������� ����

,
August 2002. 2.1.4

[35] Kerckhoffs, A. January, February 1883. La cryptographie militaire. Journal des

sciences militaires, IX, 5–38, 161–191. 2.2.1

[36] Shannon, C. 1949. Communication theory of secrecy systems. Bell Systems Techn.

Journal, 28, 656–715. 2.2.1

[37] Shannon, C. 1948. A mathematical theory of communication. Bell Systems Techn.

Journal, 27, 623–656. 2.2.1

[38] Rivest, R. L., Shamir, A., & Adleman, L. M. 1978. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21, 120–
126. 2.2.1

[39] Feistel, H. May 1973. Cryptography and computer privacy. In Scientific American,
volume 228, 15–23. Springer-Verlag. 2.2.2.1

[40] FIPS PUB 46-2, DATA ENCRYPTION STANDARD (DES). Technical report, National
Bureau of Standards, 1993.

���� ������ ���
 �� ��� ������ �� ���� ��� ��
��� ����
.

2.2.3.1

[41] Diffie, W. & Hellman, M. June 1977. Exhaustive cryptanalysis of the NBS Data
Encryption Standard. IEEE Computer, 10(6), 74–84. 2.2.3.1

[42] van Oorschot, P. & Wiener, M. J. 1996. Improving Implementable Meet-in-the-
Middle Attacks by Orders of Magnitude. Lecture Notes in Computer Science, 1109,
229–236. 2.2.3.1

[43] Rivest, R. 95, 96. Personal Communication. 2.2.3.1, 2.2.6.1

[44] Merkle, R. C. & Hellman, M. E. 1981. On the security of multiple encryption.
Commun. ACM, 24(7), 465–467. 2.2.3.1

[45] Kelsey, J., Schneier, B., & Wagner, D. 1996. Key-schedule cryptanalysis of 3-WAY
IDEA, G-DES, RC4, SAFER and Triple-DES. In Proceedings of Crypto 96, volume
1109 of Lecture Notes in Computer Science, 243–253. Springer-Verlag. 2.2.3.1

[46] Lucks, S. 1998. Attacking triple encryption. In Proceedings of Fast Software En-

cryption 98, volume 1372 of Lecture Notes in Computer Science, 239–253. Springer-
Verlag. 2.2.3.1

[47] Lai, X. & Massey, J. L. April 1990. A proposal for a new block encryption standard.
In Proceedings of Eurocrypt 90, volume 473 of Lecture Notes in Computer Science,
389–404. Springer-Verlag. 2.2.3.2

[48] Biham, E., Biryukov, A., , & Shamir, A. 1999. Miss in the Middle Attacks on IDEA
and Khufu. In Proceedings of Fast Software Encryption 99, 124–138. Springer-Verlag.
2.2.3.2

67

http://www.microsoft.com/presspass/features/2002/jul02/0724palladiumwp.asp
http://www.itl.nist.gov/fipspubs/fip46-2.htm


Protecting Sensitive Data on a PC by a Custom Algorithm

[49] Biryukov, A., Jr, J. N., Preneel, B., & Vandewalle, J. 2002. New weak-key classes of
IDEA. In Proceedings of ICICS 02, volume 2513 of Lecture Notes in Computer Science,
315–326. Springer-Verlag. 2.2.3.2

[50] Daemen, J. & Rijmen, V. AES proposal: Rijndael. Selected as the Advanced Encryp-
tion Standard. Available from

���� ������ �� ��� ������	�
. 2.2.3.3, 4.4.1

[51] Daemen, J., Knudsen, L. R., & Rijmen, V. 1997. The block cipher Square. In
Proceedings of Fast Software Encryption 97, Springer-Verlag, ed, volume 1297 of
Lecture Notes in Computer Science, 149–165. 2.2.3.3

[52] Knudsen, L. R. & Wagner, D. 1997. Integral cryptanalysis. In Proceedings of Fast

Software Encryption 02, Springer-Verlag, ed, volume 2365 of Lecture Notes in Com-

puter Science, 112–127. 2.2.3.3

[53] Gilbert, H. & Wagner, D. April 2000. A collision attack on seven rounds of Rijndael.
In Proceedings of the Third Advanced Encryption Standard Conference, NIST, ed, 230–
241. 2.2.3.3

[54] Massey, J. L., Khachatrian, G., & Kuregian, M. K. Nomination of SAFER++ as
candidate algorithm for the new European Schemes for Signatures, Integrity, and
Encryption (NESSIE). Technical report, Cylink Corp., September 2000. 2.2.3.4

[55] Shaked, Y. & Wool, A. June 2005. Cracking the Blue-
tooth PIN. In Proceedings of the Third Annual International Con-

ference on Mobile Systems, Applications and Services: MobiSys.
���� ������ �	�� ���� ��� ��
�����������	� ����
�� �� ����������	� ���� 


.
2.2.3.4

[56] Jr, J. N., Preneel, B., , & Wandewalle, J. 2001. Linear cryptanalysis of reduced-
round SAFER++. In Proceedings of the Secound NESSIE Workshop. 2.2.3.4

[57] Handschuh, H. & Naccache, D. Shacal. Technical report, Gemplus, 2000. 2.2.3.5

[58] Wang, X., Yin, Y. L., & Yu, H. Collision Search Attacks on SHA1.
���� ���������� 	 �������� ��������� ���� , February 2005. 2.2.3.5

[59] Biham, E., Keller, N., & Dunkelman, O. 2003. Rectangle attacks on SHACAL-
1. In Proceedings of Fast Software Encryption 03, volume 2887 of Lecture Notes in

Computer Science. Springer-Verlag. 2.2.3.5

[60] Englund, H. & Johansson, T. February 2005. A New Distinguisher for Clock Con-
trolled Stream Ciphers. Proceedings in Fast Software Encryption 2005. 2.2.4,
2.2.5.4

[61] Rueppel, R. A. 1986. Analysis and Design of stream ciphers. Springer-Verlag. 2.2.4,
3.2.2

[62] Blum, L., Blum, J., & Shub, M. May 1986. A simple unpredictable pseudorandom
number generator. SIAM Journal on Computing, 15(2), 364–383. 2.2.4.1

68

http://www.nist.gov/aes
http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/index.html
http://cryptome.org/sha1-attacks.htm


Protecting Sensitive Data on a PC by a Custom Algorithm

[63] Biryukov, A. & Shamir, A. 2000. Cryptanalytic time/memory/data tradeoffs for
stream ciphers. In Proceedings of Asiacrypt 00, volume 1976 of Lecture notes in

computer science, 1–13. Springer-Verlag. 2.2.4.2

[64] Massey, J. January 1969. Shift-register synthesis and BCH decoding. IEEE Transac-

tions on Information Theory, IT-15, 122–127. 2.2.4.2, 3.2.2

[65] Siegenthaler, T. 1985. Decrypting a Class of Stream Ciphers Using Ciphertext Only.
IEEE Transactions on Computers, 34(1), 81–85. 2.2.4.2

[66] Meier, W. & Staffelbach, O. 1989. Fast correlation attacks on certain stream ciphers.
J. Cryptol., 1(3), 159–176. 2.2.4.2

[67] Courtois, N. T. 2002. Higher order correlation attacks, XL algorithm, and crypto-
analysis of Toyocrypt. In Proceedings of ICISC 02, volume 2587 of Lecture Notes in

Information Security. Springer-Verlag. 2.2.4.2

[68] Ekdahl, P. & Johansson, T. 2000. SNOW: a new stream cipher. In Proceedings of

First open NESSIE Workshop. 2.2.5.1

[69] Coppersmith, D., Halevi, S., & Jutla, C. S. 2002. Cryptanalysis of stream ciphers
with linear masking. In Proceedings of Crypto 02, volume 2442 of Lecture Notes in

Computer Science, 512–532. Springer-Verlag. 2.2.5.1

[70] Hawkes, P. & Rose, G. G. 2002. Guess-and-determine attacks on SNOW. In Proceed-

ings of Selected Areas in Cryptography 02, volume 2595 of Lecture Notes in Computer

Science. Springer-Verlag. 2.2.5.1

[71] Ekdahl, P. & Johansson, T. 2002. A new version of the stream cipher SNOW.
In Proceedings of Selected Areas in Cryptography 02, Lecture Notes in Computer
Science, 47–61. Springer-Verlag. 2.2.5.1

[72] Hawkes, P. & Rose, G. G. SOBER. Technical report, September 2000. Primitive
submitted to NESSIE by Qualcomm International. 2.2.5.2

[73] Ekdahl, P. & Johansson, T. 2002. Distinguishing attacks on SOBER-t16 and t32. In
Proceedings of Fast Software Encryption 02, volume 2365 of Lecture Notes in Com-

puter Science, 210–224. Springer-Verlag. 2.2.5.2

[74] Cannière, C. D., Lano, J., Preneel, B., & Vandewalle, J. 2002. Distinguishing attacks
on SOBER-t32. In Proceedings of he Third NESSIE Workshop. 2.2.5.2

[75] Rivest, R. L. The RC4 encryption algorithm. Technical report, RSA Security Inc,
March 1992. 2.2.5.3, 4.4.1

[76] Mantin, I. & Shamir, A. 2002. A Practical Attack on Broadcast RC4. In Proceedings

of Fast Software Encryption 01, volume 2355 of Lecture Notes in Computer Science,
152. Springer-Verlag. 2.2.5.3

[77] Fluhrer, S., Mantin, I., & Shamir, A. 2002. Weaknesses in the key scheduling
algorithm of RC4. In Proceedings of Selected Areas in Cryptography 01, volume 2259
of Lecture Notes in Computer Science, 1–24. Springer-Verlag. 2.2.5.3

69



Protecting Sensitive Data on a PC by a Custom Algorithm

[78] Fluhrer, S., Mantin, I., & Shamir, A. 2003. Atacks on RC4 and WEP. 2.2.5.3

[79] Dawson, E., Clark, A., Golic, J., Millan, W., Penna, L., & Simpson, L. 2000. The
LILI-128 keystream generator. 2.2.5.4

[80] Simpson, L., Dawson, E., Golic, J. D., & Millan, W. 2000. LILI keystream generator.
In Proceedings of the Seventh Annual Workshop on Selected Areas in Cryptology 00,
volume 2384 of Lecture Notes in Computer Science, 25–39. Springer-Verlag. 2.2.5.4

[81] Babbage, S. 2001. Cryptanalysis of the LILI-128 stream cipher. In Proceedings of

the Second NESSIE Workshop 01. 2.2.5.4

[82] Saarinen, M.-J. O. 2002. A time-memory trade-off attack against LILI-128. In Pro-

ceedings of Fast Software Encryption 02, volume 2365 of Lecture Notes in Computer

Science, 231–236. Springer-Verlag. 2.2.5.4

[83] Jönsson, F. & Johansson, T. A fast correlation attack on LILI-128. Technical report,
Lund University, 2001. 2.2.5.4

[84] Clark, A., Dawson, E., Fuller, J., Golic, J., Lee, H.-J., Millan, W., Moon, S.-J., &
Simpson, L. 2002. The LILI-II keystream generator. In Proceedings of ACISP 02,
volume 2384 of Lecture Notes in Computer Science, 25–39. Springer-Verlag. 2.2.5.4

[85] Charles P. Wright, J. D. & Zadok, E. 2003. Cryptographic File Systems Performance:
What You DonŠt Know Can Hurt You. In Proceedings of the 2003 IEEE Security In

StorageWorkshop (SISW 2003). 2.2.6

[86] Wright, H. 2001. The Encrypting File System. How Secure is it? 2.2.6.1

[87] Håkan Englund, M. H. & Johansson, T. February. Correlation Attacks Using a
New Class of Weak Feedback Polynomials. In Proceedings of the 2004 Fast Software

Encryption. 3.1.2

[88] Gary, M. & Johnson, D. 1979. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman. 3.2.1

[89] Golomb, S. W. & Golomb, S. 1981. Shift Register Sequences. Aegean Park Press,
Laguna Hills, CA, USA. 3.2.1

[90] Camion, P., Carlet, C., Charpin, P., & Sendrier, N. 1992. On Correlation-Immune
Functions. In CRYPTO ’91: Proceedings of the 11th Annual International Cryptology

Conference on Advances in Cryptology, 86–100, London, UK. Springer-Verlag. 3.2.3

[91] Gundersen, G. & Steihaug, T. 2004. On the Efficiency of Arrays in C, C# and Java.
3.3

[92] Schneier, B. & Whiting, D. 1997. Fast Software Encryption: Designing Encryption
Algorithms for Optimal Software Speed on the Intel Pentium Processor. In Pro-

ceedings of Fast Software Encryption 97, volume 1267 of Lecture Notes in Computer

Science, 242. Springer-Verlag. 3.3

70



Protecting Sensitive Data on a PC by a Custom Algorithm

[93] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Banks, D., Heckert, A., Dray, J., & Vo, S. A Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applications.
Technical Report NIST SP 800-22, National Institute of Standards and Technology,
2001. 4.1, 4.2, 4.2, 4.3, 4.3.4

[94] Rose, G. 1998. A stream cipher based on linear feedback over GF(28). In Proceed-

ings of ACISP 98, Lecture Notes in Computer Science, 150. Springer-Verlag. 4.4.3

[95] Odlyzko, A. September 2003. Economics, psychology, and sociology of security.
In Financial Cryptography, volume 2742 of Lecture Notes in Computer Science, 182–
189. Springer-Verlag. 5.1

[96] Schneier, B. 2000. Secrets & Lies. Wiley Publishing, Inc. 6

71





Protecting Sensitive Data on a PC by a Custom Algorithm

A Source Code

73



1D:\prosjekt\msc_fredrik\c#koder\Ciperprosjektet\TheCipherProject\SAFEII.cs

using System;
using System.IO;
using System.Text;
using System.Security.Cryptography;

namespace TheCipherProject
{
 /// <summary>
 /// Summary description for class LFSR. LFSR is a class which simulates different shift

 registers.
 /// </summary>
 public class LFSR
 {
  /// <summary>
  /// The LFSR struct. Contains the relevant data for a LFSR.
  /// </summary>
  public struct register
  {
   /// <summary>
   /// Register buffer
   /// </summary>
   public uint[] buf;
   /// <summary>
   /// register pol. const.
   /// </summary>
   public int[] con;
   /// <summary>
   /// register taps
   /// </summary>
   public int[] tap;
    
  // public register(int BUFFER_LENGTH, int MAX_CONS, int MAX_TAPS)
  // {
  //  this.buf = new int[BUFFER_LENGTH];
  //  this.con = new int[MAX_CONS];
  //  this.tap = new int[MAX_TAPS];
  // }  
  }
  
  /// <summary>
  /// An instance of the register struct.
  /// </summary>
  public register myregister;
      
  /// <summary>
  /// Constructor to initialize The LFSRs
  /// </summary>
  /// <param name="bl">The length of the buffer.</param>
  /// <param name="mc">The number of polynominal constants.</param>
  /// <param name="mt">The number of Taps.</param>
  /// <param name="pol">The specific feedback polynominal constants.</param>
  public LFSR(int bl, int mc, int mt, int [] pol)
  {
   //Initialize the register
   myregister.buf = new uint[bl];
   myregister.con = new int[mc];
   myregister.tap = new int[mt];
     
   //fixed (register *lfsreg = myregister)
   //{
   // *lfsreg->buf = new int[bl];
   //}
   //lfsreg =& myregister;

 
   //Initialize feedback polynomial
   for ( int i = 1; i <= pol.GetLength(0); i++)
   {
    myregister.con[i] = pol[i-1];
   }
  }
  /// <summary>
  /// This function generates a file rndLFSR1.dat which is used to initialze the 

shift register.
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  /// Testing purposes only.
  /// </summary>
  /// <param name="reg_len"> The Length of the register (X^length).</param>
  public void Init_file(int reg_len)
  {
   MT mt = new MT();
   StreamWriter sw = new StreamWriter ( "rndLFSR1.dat", false ) ; 
   for (int i = 1; i <= reg_len; i++)
    {
     sw.WriteLine( mt.Random() );
    }
   sw.Close();
  }
  /// <summary>
  /// This function generates a file rndLFSR2.dat which is used to initialze the 

shift register.
  /// Testing purposes only.
  /// </summary>
  /// <param name="reg_len"> The Length of the register (X^length).</param>
  public void Init_file2(int reg_len)
  {
   MT mt = new MT();
   StreamWriter sw = new StreamWriter ( "rndLFSR2.dat", false ) ; 
   for (int i = 1; i <= reg_len; i++)
   {
    sw.WriteLine( mt.Random() );
   }
   sw.Close();
  }
  /// <summary>
  /// This function generates a file rndLFSR3.dat which is used to initialze the 

shift register.
  /// Testing purposes only.
  /// </summary>
  /// <param name="reg_len"> The Length of the register (X^length).</param>
  public void Init_file3(int reg_len)
  {
   MT mt = new MT();
   StreamWriter sw = new StreamWriter ( "rndLFSR3.dat", false ) ; 
   for (int i = 1; i <= reg_len; i++)
   {
    sw.WriteLine( mt.Random() );
   }
   sw.Close();
  }
  /// <summary>
  /// This function generates a file rndLFSR4.dat which is used to initialze the 

shift register.
  /// Testing purposes only.
  /// </summary>
  /// <param name="reg_len"> The Length of the register (X^length).</param>
  public void Init_file4(int reg_len)
  {
   MT mt = new MT();
   StreamWriter sw = new StreamWriter ( "rndLFSR4.dat", false ) ; 
   for (int i = 1; i <= reg_len; i++)
   {
    sw.WriteLine( mt.Random() );
   }
   sw.Close();
  }
  /// <summary>
  /// This function initialze the first shift register from file.
  /// Testing purposes only.
  /// </summary>
  public void Init_lfsr1_from_file()
  {
   StreamReader sr = new StreamReader(@"rndLFSR1.dat" ) ;
   int i = 1;
   string str;
   do
   {
    str = sr.ReadLine() ;
    myregister.buf[i++] = System.Convert.ToUInt32(str,10); 
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   } while ( str != null ) ; 

   sr.Close() ;

   
  }
  /// <summary>
  /// This function initialze the secound shift register from file.
  /// Testing purposes only.
  /// </summary>
  public void Init_lfsr2_from_file()
  {
   StreamReader sr = new StreamReader(@"rndLFSR2.dat" ) ;
   int i = 1;
   string str;
   do
   {
    str = sr.ReadLine() ;
    myregister.buf[i++] = System.Convert.ToUInt32(str,10); 
   
   } while ( str != null ) ; 

   sr.Close() ;

  }
  /// <summary>
  /// This function initialze the third shift register from file.
  /// Testing purposes only.
  /// </summary>
  public void Init_lfsr3_from_file()
  {
   StreamReader sr = new StreamReader(@"rndLFSR3.dat" ) ;
   int i = 1;
   string str;
   do
   {
    str = sr.ReadLine() ;
    myregister.buf[i++] = System.Convert.ToUInt32(str,10); 
   
   } while ( str != null ) ; 

   sr.Close() ;

   
  }
  /// <summary>
  /// This function initialze the fourth shift register from file.
  /// Testing purposes only.
  /// </summary>
  public void Init_lfsr4_from_file()
  {
   StreamReader sr = new StreamReader(@"rndLFSR4.dat" ) ;
   int i = 1;
   string str;
   do
   {
    str = sr.ReadLine() ;
    myregister.buf[i++] = System.Convert.ToUInt32(str,10); 
   
   } while ( str != null ) ; 

   sr.Close() ;

  }
  
  /// <summary>
  /// Description for LFSR_shift method. This method shifts the linear shift register

 once.
  /// Only the pointers to the feedback and taps positions are shifted to the left 

modulo the length of the 
  /// buffer.</summary>
  /// <param name="input_byte"> Number of input byte</param>
  /// <param name="lfsr"> The initialized register struct</param>
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  /// <param name="nc"> Number of feedback taps</param>
  /// <param name="nt"> Number of output taps</param>
  public uint LFSR_shift( uint input_byte,ref register lfsr, int nc, int nt )
  {
   uint feedback_value;
   int i, buf_len;
   buf_len = lfsr.buf.GetLength(0) -1;
   feedback_value = input_byte;
   //Update the feedback pointers
   for (i = 1; i <= nc;i++)
    {
     feedback_value ^= lfsr.buf[lfsr.con[i]];
     lfsr.con[i] = -- lfsr.con[i] & buf_len;
    }
   lfsr.buf[lfsr.con[0]] = feedback_value;
   lfsr.con[0]  = -- lfsr.con[0] & buf_len;
   //Update tap pointers
   for (i = 1;i <= nt; i++)
   {
    lfsr.tap[i] = -- lfsr.tap[i] & buf_len;
   }
   return feedback_value;
  }
 
 }
 
 /// <summary>
 /// The General cipher class
 /// </summary>
 public class SAFEII
 {
  const int BUFFER_LENGTH = 256;
  const int MAX_CONS = 10;
  const int MAX_TAPS = 10;
  const int LFSR1_LENGTH = 107;
  const int LFSR2_LENGTH = 127;
  const int LFSR3_LENGTH = 103;
  const int LFSR4_LENGTH = 149;
  const int F_LENGTH = 65536;
        int[] pol1 = {27,62,92,107};
  int[] pol2 = {15,59,62,127};
  int[] pol3 = {34,43,66,103};
  int[] pol4 = {29,64,114,149};
  uint[] m_key = new uint[2];
  uint[] s_key = new uint[8]; 
  /// <summary>
  /// The lookup boolean/bit table f1.
  /// </summary>
  public bool[] f1; 
  /// <summary>
  /// The lookup boolean/bit table f2. 
  /// </summary>
  public bool[] f2;
  /// <summary>
  /// The lookup boolean/bit table f11.
  /// </summary>
  public bool[] f11; 
  /// <summary>
  /// The lookup boolean/bit table f21. 
  /// </summary>
  public bool[] f21;
  LFSR mylfsr1;
  LFSR mylfsr2;
  LFSR mylfsr3;
  LFSR mylfsr4;
  /// <summary>
  /// Constructor to start an encryption/decryption process
  /// </summary>
  public SAFEII()
  {
   //Initialize the first LFSR.
   mylfsr1 = new LFSR(BUFFER_LENGTH,MAX_CONS,MAX_TAPS, pol1);
   //Initialise the Secound secound LFSR
   mylfsr2 = new LFSR(BUFFER_LENGTH,MAX_CONS,MAX_TAPS, pol2);



5D:\prosjekt\msc_fredrik\c#koder\Ciperprosjektet\TheCipherProject\SAFEII.cs

   //Initialize the third LFSR.
   mylfsr3 = new LFSR(BUFFER_LENGTH,MAX_CONS,MAX_TAPS, pol3);
   //Initialise the fourth LFSR
   mylfsr4 = new LFSR(BUFFER_LENGTH,MAX_CONS,MAX_TAPS, pol4);
   
   //Initilize the look up tables
   f1 = new bool[F_LENGTH];
   f2 = new bool[F_LENGTH];
   f11 = new bool[F_LENGTH];
   f21 = new bool[F_LENGTH];
   /*mylfsr1.Init_file(ref mylfsr1.myregister, LFSR1_LENGTH);
     mylfsr2.Init_file2(ref mylfsr1.myregister, LFSR2_LENGTH);*/
   
   //Initialise the content of the first LFSR from file
   //mylfsr1.Init_lfsr1_from_file();
   //Initialise the content of the Secound IClocking  LFSR from file
   //mylfsr2.Init_lfsr2_from_file();

   //Initialize the bool array to simulate the f1 table from file
   Init_f1();
   //Initialize the bool array to simulate the f2 table from file
   Init_f2();
   //Initialize the bool array to simulate the f11 table from file
   Init_f11();
   //Initialize the bool array to simulate the f21 table from file
   Init_f21();
   
   
  }
  /// <summary>
  /// This function rotates a 32 bit source steps positions to the right
  /// </summary>
  /// <param name="source">The source to rotate</param>
  /// <param name="steps">Number of steps to rotate</param>
  /// <returns></returns>
  uint rotate_right(uint source, int steps)
  {
   uint tmp = source >> steps;
   uint tmp2 = Convert.ToUInt32(tmp | (source << (32 - steps))) ;
   return tmp2;   
  }
  /// <summary>
  /// This function generates the 32 bit output from the primitive s1
  /// </summary>
  /// <param name="feedback_value">The feedback value from the first LFSR</param>
  /// <returns></returns>
  uint generate_output_from_s1(uint feedback_value)
  {
   uint feedback = mylfsr2.LFSR_shift(0,ref mylfsr2.myregister, 4,1);
   uint addr1 = (feedback_value & 0xffff0000)>>16 ;
   uint addr2 = feedback_value & 0x0000ffff ;
   return (Gen_output_f1(addr1) ^ Gen_output_f2(addr2)) == 0? feedback : mylfsr2.

LFSR_shift(0,ref mylfsr2.myregister, 4,1);
  }
  /// <summary>
  /// This function generates the 32 bit output from the primitive s2
  /// </summary>
  /// <param name="feedback_value">The feedback value from the third LFSR</param>
  /// <returns></returns>
  uint generate_output_from_s2(uint feedback_value)
  {
   uint feedback = mylfsr4.LFSR_shift(0,ref mylfsr4.myregister, 4,1);
   uint addr1 = (feedback_value & 0xffff0000) >>16 ;
   uint addr2 = feedback_value & 0x0000ffff ;
   return (Gen_output_f11(addr1) ^ Gen_output_f21(addr2)) == 0 ? feedback : 

mylfsr4.LFSR_shift(0,ref mylfsr4.myregister, 4,1);
  }
  /// <summary>
  /// Generate 32 bit output from the complete generator.
  /// </summary>
  /// <returns>Returns one 32 bit output from the generator.</returns>
  ulong generate_final_keystream_output()
  {
   return Convert.ToUInt32(Convert.ToUInt64(generate_output_from_s1(mylfsr1.
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LFSR_shift(0,ref mylfsr1.myregister,4,1)) + generate_output_from_s2(mylfsr3.LFSR_shift
(0,ref mylfsr3.myregister,4,1))) % 4294967296) ;

  }
  /// <summary>
  /// Read the keys into the keystream class
  /// </summary>
  /// <param name="s">referance to the keystream class</param>
  void read_keys(ref SAFEII s)
  {
   StreamReader sr = new StreamReader(@"m_key.dat" ) ;
   string str;
   str = sr.ReadLine();
   if (str != null) 
   {
    s.m_key[0] = Convert.ToUInt32(str.Substring(0,32),2);
    s.m_key[1] = Convert.ToUInt32(str.Substring(32,32),2);
   }
   sr.Close() ;
   sr = new StreamReader(@"s_key.dat");
   str = sr.ReadLine();
   if (str != null) 
   {
    int pos = 0;
    for(int i = 0; i < 8; i++)
    {
     s.s_key[i] = Convert.ToUInt32(str.Substring(pos,32),2);
     pos += 32;
    }
   }
   sr.Close();
  }
  /// <summary>
  /// Initialize the primitives based on the secret key and the message key
  /// </summary>
  /// <param name="s">a referance to the keystream class</param>
  void init_primitives(ref SAFEII s)
  {
   int i,j,s12 = LFSR1_LENGTH + LFSR2_LENGTH, s123 = s12 + LFSR3_LENGTH;
   uint[] c = new uint[512] ;
   for(i = 0; i < 2; i++)
    for (j = 0; j < 8; j++)
     c[i*8+j] = s.m_key[i] ^ s.rotate_right(s_key[j], j);
   for(i=16;i<486;i++)
    c[i] = c[i-16] ;
   for(i=1;i<=LFSR1_LENGTH;i++)
    mylfsr1.myregister.buf[i] = c[i-1];
   for(i=1;i<=LFSR2_LENGTH;i++)
    mylfsr2.myregister.buf[i] = c[LFSR1_LENGTH+i-1];
   for(i=1;i<=LFSR3_LENGTH;i++)
    mylfsr3.myregister.buf[i] = c[s12+i-1];
   for(i=1;i<=LFSR4_LENGTH;i++)
    mylfsr4.myregister.buf[i] = c[s123+i-1];
   uint test ;
   for(int k = 0; k < 256; k++)
   {
    s.generate_final_keystream_output();
   }
  }
  /// <summary>
  /// This function initialze the boolean function f1 from file.
  /// Testing purposes only.
  /// </summary>
  public void Init_f1()
  {
   StreamReader sr = new StreamReader(@"f1.dat" ) ;
   int i = 0;
   string str;
   do
   {
    str = sr.ReadLine();
    if (str != null) 
    {
     str = str.Replace(" ","");
     for (int j = 0; j < str.Length; j++)
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     {
      f1[i++] = System.Convert.ToBoolean(System.Convert.ToInt16(str.

Substring(j,1)));
     }   
    }
   } while ( str != null ) ; 

   sr.Close() ;

  }
  /// <summary>
  /// This function initialze the boolean function f2 from file.
  /// Testing purposes only.
  /// </summary>
  public void Init_f2()
  {
   StreamReader sr = new StreamReader(@"f2.dat" ) ;
   int i = 0;
   string str;
   do
   {
    
    str = sr.ReadLine() ;
    if ( str != null) 
    {
     str = str.Replace(" ","");
     for (int j = 0; j < str.Length; j++)
      f2[i++] = System.Convert.ToBoolean(System.Convert.ToInt16(str.

Substring(j,1)));
    }
   } while ( str != null ) ; 

   sr.Close() ;

  }
  /// <summary>
  /// This function initialze the boolean function f1 from file.
  /// Testing purposes only.
  /// </summary>
  public void Init_f11()
  {
   StreamReader sr = new StreamReader(@"f11.dat" ) ;
   int i = 0;
   string str;
   do
   {
    str = sr.ReadLine();
    if (str != null) 
    {
     str = str.Replace(" ","");
     for (int j = 0; j < str.Length; j++)
     {
      f11[i++] = System.Convert.ToBoolean(System.Convert.ToInt16(str.

Substring(j,1)));
     }   
    }
   } while ( str != null ) ; 

   sr.Close() ;

  }
  /// <summary>
  /// This function initialze the boolean function f21 from file.
  /// Testing purposes only.
  /// </summary>
  public void Init_f21()
  {
   StreamReader sr = new StreamReader(@"f21.dat" ) ;
   int i = 0;
   string str;
   do
   {
    
    str = sr.ReadLine() ;
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    if ( str != null) 
    {
     str = str.Replace(" ","");
     for (int j = 0; j < str.Length; j++)
      f21[i++] = System.Convert.ToBoolean(System.Convert.ToInt16(str.

Substring(j,1)));
    }
   } while ( str != null ) ; 

   sr.Close() ;

  }
  /// <summary>
  /// This function returns 1 bit output from the look up table f1
  /// </summary>
  /// <param name="feedback_value">16 bit input from the LFSR</param>
  /// <returns></returns>
  public int Gen_output_f1(uint feedback_value)
  {
   if ( f1[feedback_value] )
    return 1;
   else
    return 0;
  }
  /// <summary>
  /// This function returns 1 bit output from the look up table f2
  /// </summary>
  /// <param name="feedback_value">16 bit input from the LFSR</param>
  /// <returns></returns>
  public int Gen_output_f2(uint feedback_value)
  {
   if ( f2[feedback_value] )
    return 1;
   else
    return 0;
  }
  /// <summary>
  /// This function returns 1 bit output from the look up table f11
  /// </summary>
  /// <param name="feedback_value">16 bit input from the LFSR</param>
  /// <returns></returns>
  public int Gen_output_f11(uint feedback_value)
  {
   if ( f11[feedback_value] )
    return 1;
   else
    return 0;
  }
  /// <summary>
  /// This function returns 1 bit output from the look up table f21
  /// </summary>
  /// <param name="feedback_value">16 bit input from the LFSR</param>
  /// <returns></returns>
  public int Gen_output_f21(uint feedback_value)
  {
   if ( f21[feedback_value] )
    return 1;
   else
    return 0;
  }
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